6,576 research outputs found

    Measures of non-compactness in Orlicz modular spaces

    Get PDF
    In this paper we show that the ball measure of non-compactness of a norm bounded subset of an Orlicz modular space LψL^\psi is equal to the limit of its nn-widths. We also obtain several inequalities between the measures of noncompactness and the limit of the nn-widths for modular bounded subsets of LψL^\psi which do not have Δ2\Delta_2-condition. Minimum conditions on ψ\psi to have such results are specified and an example of such a function ψ\psi is provided

    AGAPE, an experiment to detect MACHO's in the direction of the Andromeda galaxy

    Get PDF
    The status of the Agape experiment to detect Machos in the direction of the andromeda galaxy is presented.Comment: 4 pages, 1 figure in a separate compressed, tarred, uuencoded uufile. In case ofproblem contact [email protected]

    AgapeZ1: a Large Amplification Microlensing Event or an Odd Variable Star Towards the Inner Bulge of M31

    Full text link
    AgapeZ1 is the brightest and the shortest duration microlensing candidate event found in the Agape data. It occured only 42" from the center of M31. Our photometry shows that the half intensity duration of the event6 is 4.8 days and at maximum brightness we measure a stellar magnitude of R=18.0 with B-R=0.80 mag color. A search on HST archives produced a single resolved star within the projected event position error box. Its magnitude is R=22.Comment: 4 pages with 5 figure

    Microlensing towards M31 with MDM data

    Full text link
    We report the final analysis of a search for microlensing events in the direction of the Andromeda galaxy, which aimed to probe the MACHO composition of the M31 halo using data collected during the 1998-99 observational campaign at the MDM observatory. In a previous paper, we discussed the results from a first set of observations. Here, we deal with the complete data set, and we take advantage of some INT observations in the 1999-2000 seasons. This merging of data sets taken by different instruments turns out to be very useful, the study of the longer baseline available allowing us to test the uniqueness characteristic of microlensing events. As a result, all the candidate microlensing events previously reported turn out to be variable stars. We further discuss a selection based on different criteria, aimed at the detection of short--duration events. We find three candidates whose positions are consistent with self--lensing events, although the available data do not allow us to conclude unambiguously that they are due to microlensing.Comment: Accepted for publication in Astronomy and Astrophysic

    Search for exoplanets in M31 with pixel-lensing and the PA-99-N2 event revisited

    Full text link
    Several exoplanets have been detected towards the Galactic bulge with the microlensing technique. We show that exoplanets in M31 may also be detected with the pixel-lensing method, if telescopes making high cadence observations of an ongoing microlensing event are used. Using a Monte Carlo approach we find that the mean mass for detectable planetary systems is about 2MJ2 M_{\rm {J}}. However, even small mass exoplanets (MP<20MM_{\rm P} < 20 M_{\oplus}) can cause significant deviations, which are observable with large telescopes. We reanalysed the POINT-AGAPE microlensing event PA-99-N2. First, we test the robustness of the binary lens conclusion for this light curve. Second, we show that for such long duration and bright microlensing events, the efficiency for finding planetary-like deviations is strongly enhanced with respect to that evaluated for all planetary detectable events.Comment: 14 pages, 8 figures. Paper presented at the "II Italian-Pakistani Workshop on Relativistic Astrophysics, Pescara, July 8-10, 2009. To be published in a special issue of General Relativity and Gravitation (eds. F. De Paolis, G.F.R. Ellis, A. Qadir and R. Ruffini

    AGAPE: a microlensing search in the direction of M31

    Get PDF
    A status report of the microlensing search by the pixel method in the direction of M31, on the 2 meter telescope at Pic du Midi is given. Pixels are stable to a level better than 0.5%. Pixel variations as small as 0.02 magnitude can clearly be detected

    From error bounds to the complexity of first-order descent methods for convex functions

    Get PDF
    This paper shows that error bounds can be used as effective tools for deriving complexity results for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit the interplay between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can show the equivalence between the two concepts for convex functions having a moderately flat profile near the set of minimizers (as those of functions with H\"olderian growth). A counterexample shows that the equivalence is no longer true for extremely flat functions. This fact reveals the relevance of an approach based on KL inequality. In a second stage, we show how KL inequalities can in turn be employed to compute new complexity bounds for a wealth of descent methods for convex problems. Our approach is completely original and makes use of a one-dimensional worst-case proximal sequence in the spirit of the famous majorant method of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide class of descent methods. As a byproduct of our study, we also provide new results for the globalization of KL inequalities in the convex framework. Our main results inaugurate a simple methodology: derive an error bound, compute the desingularizing function whenever possible, identify essential constants in the descent method and finally compute the complexity using the one-dimensional worst case proximal sequence. Our method is illustrated through projection methods for feasibility problems, and through the famous iterative shrinkage thresholding algorithm (ISTA), for which we show that the complexity bound is of the form O(qk)O(q^{k}) where the constituents of the bound only depend on error bound constants obtained for an arbitrary least squares objective with 1\ell^1 regularization

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    Variable stars towards the bulge of M31: the AGAPE catalogue

    Full text link
    We present the AGAPE astrometric and photometric catalogue of 1579 variable stars in a 14'x10' field centred on M31. This work is the first survey devoted to variable stars in the bulge of M31. The R magnitudes of the objects and the B-R colours suggest that our sample is dominated by red long-period variable stars (LPV), with a possible overlap with Cepheid-like type II stars. Twelve nova candidates are identified. Correlations with other catalogues suggest that 2 novae could be recurrent novae and provide possible optical counterparts for 2 supersoft X-ray sources candidates observed with Chandra.Comment: 11 pages, Latex, accepted for publication in A&
    corecore