
Collect. Math. 44 (1993), 1–11

c© 1994 Universitat de Barcelona

Measures of non-compactness in Orlicz modular spaces

A.G. Aksoy

Department of Mathematics, Claremont McKenna College

Claremont, California U.S.A.

J.B. Baillon

Université Lyon I-IMI, 69622 Villeurbonne Cedex, France

Abstract

In this paper we show that the ball measure of non-compactness of a norm
bounded subset of an Orlicz modular space Lψ is equal to the limit of its
n-widths. We also obtain several inequalities between the measures of non-
compactness and the limit of the n-widths for modular bounded subsets of Lψ

which do not have ∆2-condition. Minimum conditions onψ to have such results
are specified and an example of such a function ψ is provided.

Introduction and Preliminaries

We start by recalling the usual definitions of Orlicz and modular spaces.

Definition A. Let X be a vector space. A functional ρ:X → [0,∞] is called a
modular; if for f, g ∈ X the following is true:
(i) ρ(f) = 0 if and only if f = 0
(ii) ρ(af) = ρ(f) if |a| = 1
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(iii) ρ(af + bg) ≤ ρ(f) + ρ(g) for a+ b = 1 and a, b ≥ 0.
If (iii) is replaced by

(iii)′ ρ(af + bg) ≤ asρ(f) + bsρ(g) for f, g ∈ X, 0 ≤ a, b, as + bs = 1

with 0 < s ≤ 1 fixed, ρ is called s-convex modular (convex if s = 1).
For example, every monotone F -norm ρ is a modular, every norm is a convex

modular, and ρ(x) =
√

|x| for x ∈ R is a 1
2 -convex modular. To a modular we

associate a modular space. Let X be a real vector space and ρ be a modular on X.
We define the modular space Xρ by

Xρ =
{
f ∈ X: lim

α→0
ρ(αf) = 0

}
.

Obviously Xρ is a vector subspace of X.

Definition B. An Orlicz function ψ:R→ R+ is a continuous nondecreasing func-
tion with ψ(0) = 0, ψ(t) → ∞ as t→ ∞ and ψ(−x) = ψ(x), i.e. ψ behaves similarly
to power function ψ(t) = tp.

Let ψ be an Orlicz function and let (X,M, µ) be a σ-finite measure space. Then
for every measurable real valued function f on X, we define the Orlicz modular by

ρ(f) =
∫
X

ψ(|f(x)|)dµ.

ρ is convex if ψ is convex.
The Orlicz space is the space of all (equivalence classes of) measurable real

valued functions f on X so that lim
λ→0

ρ(λf) = 0. Obviously, an Orlicz space Lψ

is a generalization of the classical Lp-spaces. Although ψ behaves similarly to the
power function ψ(t) = tp, the convexity of the Orlicz function can be omitted; two
examples of such functions are:

ψ(t) = et − 1 and ψ(t) = ln(1 + t).

The vector space Lψ can be equipped with an F -norm defined by

‖f‖ρ = inf
{
λ > 0: ρ

(f
λ

)
≤ λ

}
.

If ρ is convex, then

‖f‖ρ = inf
{
λ > 0: ρ

(f
λ

)
≤ 1

}

will define a norm on Lψ, in either case the norm is called a Luxemburg norm.
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With this norm (Lψ, ‖ ‖ρ) is a Banach space in case ρ is convex [9]. One has
two structures on Lψ; one is that of Banach space induced by the norm ‖ ‖ρ, and
the other is the structure of a modular space induced by the Orlicz modular ρ.

Although the study of structure of Lψ spaces is interesting in itself, many
applications to differential and integral equations with kernels of nonpower types
are the basic reason for the development of Orlicz spaces. Also, it should be noted
that the most commonly used rearrangement invariant functions spaces, beside Lp-
space are the Orlicz function spaces. (See e.g. J. Lindenstrauss and L. Tzafriri [11].)

Let ρ be an Orlicz modular on Lψ, a sequence (fk) of elements Lψ is called
modular convergent (or ρ-convergent) to f ∈ Lψ if

ρ(fk − f) → 0 as h→ ∞.

Norm-convergence in Lψ implies ρ-convergence, but ρ-convergence does not imply
norm-convergence. In case the measure space is σ-finite, the following theorem gives
the equivalence. We say ψ satisfies ∆2-condition if
(i) lim sup

u→∞
ψ(2u)/ψ(u) <∞ and lim sup

u→0
ψ(2u)/ψ(u) <∞ in case the measure µ is

atomless and infinite.
(ii) lim sup

u→∞
ψ(2u)/ψ(u) <∞ in case the measure µ is atomless and finite.

(iii) lim sup
u→0

ψ(2u)/ψ(u) <∞ in case the measure µ in case the measure µ is purely

atomic.
All of them imply that there exists K, c > 0 such that for all f ∈ Lψ we have

ρ(2f) ≤ Kρ(f) + c.

Theorem ([9])

Norm convergence and ρ-convergence are equivalent in Lψ if and only if ψ

satisfies the ∆2-condition.

It should be remarked that Orlicz spaces Lψ with the ∆2-condition are not far
from Lp-spaces in the sense that there are analogous theorems about separability.
However, in the spaces which lack a ∆2-condition, the fact that ρ-convergence is not
reducible to norm convergence makes modular convergence interesting. For further
theory of Orlicz modular spaces, we refer to [8], [9], [12] and [14].

As for the measures of non-compactness [2], they are of interest in many spaces.
They are used in fixed point theory (see Darbo [3], Sadovskii [17], Reich [15], [16]),
and also in the study of the essential spectrum (see Nussbaum [13], Lebow-Schechter
[10], Aksoy [1]). Measures of non-compactness of embeddings in the context of
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Sobolev spaces are given by D.E. Edmunds and W.D. Evans [6]. The (ball) measure
of non-compactness α(T ) of T is defined to be:

α(T ) = inf
{
ε > 0:T (Bx) can be covered by finitely many balls of radius ε

}
.

The estimates of α for embedding maps can be found in [4]. Two types of
measures of non-compactness, namely entropy and approximation numbers of em-
beddings in Orlicz spaces, are also studied in [5]. In [7], one can find fixed point
theorems in Orlicz modular spaces.

The purpose of this paper is to study measures of non-compactness in the con-
text of Orlicz spaces, where the Orlicz space under consideration is either equipped
with the norm or just an Orlicz modular. We will investigate equality of certain
measures of non-compactness in Lψ even if ψ does not satisfy the ∆2-condition.
From this point on, ψ is assumed to be convex.

Definition 1. Let ξ > 0 be a fixed real number and let f ∈ Lψ. We define ‖f‖,
the norm of f , as:

‖f‖ =
ξ

s(f)
where s(f) = sup{s: ρ(sf) ≤ ξ} > 0 .

Proposition 1

‖f‖ = ξ
s(f) satisfies the properties of a norm.

Proof. Suppose f = 0, then using the fact that ψ(0) = 0, we obtain ρ(sf) = 0 ≤ ξ

which implies that ‖f‖ = 0. On the other hand, if ‖f‖ = 0, from the definition
there is sn → ∞ such that ρ(snf) ≤ ξ or equivalently ξ ≥

∫
ψ(|snf(x)|)dµ. Since ψ

is lower semi-continuous, we have

ξ ≥ lim
∫
ψ(|snf(x)|)dµ ≥

∫
limψ(|snf(x)|)dµ

≥
∫
ψ(lim|snf(x)|)dµ =

∫
{x:f(x)=0}

+
∫
{x:f(x) �=0}

=
∫
{x:f(x)=0}

ψ(0)dµ+
∫
{x:f(x) �=0}

ψ(∞)dµ

= µ({x: f(x) = 0}) · ψ(0) + µ({x: f(x) �= 0}) · ψ(∞)

Again using the facts that ψ(0) = 0 and ψ(∞) = ∞, we obtain:

≥ 0 + ∞ · µ({x: f(x) �= 0})

which implies µ({x: f(x) �= 0}) = 0 or f = 0 a.e. µ.
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To show ‖λf‖ = |λ| ‖f‖, consider

s(λf) = sup{s: ρ(sλf) ≤ ξ} = sup
{
s

|λ| : ρ
( s
λ
· λf

)
≤ ξ

}

=
1
|λ| sup{s: ρ(sf) ≤ ξ} =

1
|λ|s(f)

so

‖λf‖ =
ξ

s(λf)
=

|λ|ξ
s(f)

= |λ| ‖f‖ .

To show the triangle inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖, let sf and sg denote the s(f)
and s(g), respectively. Then

sf · sg
sf + sg

(f + g) =
sg

sf + sg
(sf · f) +

sf
sf + sg

(sg · g) ≤ ξ .

Since ψ is convex

ρ

(
sf · sg
sf + sg

(f + g)
)

=
sg

sf + sg
ρ(sf · f) +

sf
sf + sg

ρ(sg · g) ≤ ξ .

Thus s(f + g) ≥ sf ·sg
sf+sg

and hence s(f + g) ≥ s(f)·s(g)
s(f)+s(g) . Now

‖f + g‖ =
ξ

s(f + g)
≤ ξ · s(f) + s(g)

s(f) · s(g) = ‖f‖ + ‖g‖. �

Remark 1. Proof of Proposition 1 can be shortened if one makes the following
observations: Let v > 0 and consider the new modular ρv = vρ, then

‖f‖ρv = inf
{
t > 0: ρ

(f
t

)
≤ 1
v

}
.

Let i(f) = inf{t: ρ( ft ) ≤ ξ}, then i(f) = ‖f‖ 1
ξ ρ

and since s(f) = 1
i(f) ,

ξ
s(f) = ξ‖f‖ 1

ξ ρ

holds and clearly defines a norm.
For any modular, it is known that ρ(f) ≤ 1 if and only if ‖f‖ρ ≤ 1. Therefore,

using the above Remark 1, we can conclude that:

‖f‖ 1
ξ ρ

≤ 1 iff
1
ξ
ρ(f) ≤ 1 iff ρ(f) ≤ ξ.

Therefore, ξ‖f‖ 1
ξ ρ

≤ ξ iff ρ(f) ≤ ξ and hence in our notation:

‖f‖ ≤ ξ iff ρ(f) ≤ ξ.
Notations

B‖ ‖(r) = {f : ‖f‖ ≤ r}, Bρ(r) = {f : ρ(f) ≤ r} denotes the norm-ball and
ρ-ball centered at 0 and radius r, respectively, where ‖ · ‖ is the norm defined in
Proposition 1 and ρ is the Orlicz modular on Lψ.

Furthermore, we will use r± for any number of the form r ± ε for any ε > 0
small enough, if there is no ambiguity.
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Proposition 2
f ∈ B‖·‖(r) if and only if ρ( ξfr ) ≤ ξ.

Proof. If ρ( ξfr ) ≤ ξ, then s(f) ≥ ξ
r , thus ‖f‖ = ξ

s(f) ≤ r. Conversely let f ∈ B‖·‖(r),

then ξ
r ≤ s(f). First suppose ξ

r = s(f), then since ψ is increasing there is sf = s(f)−

such that ρ(s−f f) ≤ ξ. Now using the Fatou property and the fact that ψ is lower
semi-continuous, we have

limρ(s−f f) ≥
∫

limψ(s−f f) ≥
∫
ψ(lims−f f) = ρ(s(f) · f) .

There, ρ( ξrf) ≤ ξ.
Secondly, suppose ξ

r < s(f), then there is sf = s(f)− such that ρ(s−f f) ≤ ξ,
but ξ

r < s
−
f ≤ s(f). Again using the fact that ψ is increasing we obtain

ρ

(
ξ

r
f

)
≤ ρ(s−f f) ≤ ξ. �

The following result uses Proposition 2 to illustrate the relationship between
ρ-balls and norm-balls of Lψ.

Proposition 3
(i) When r ≤ ξ, we have B‖·‖(r) ⊆ Bρ(r).
(ii) When ξ ≤ r, we have Bρ(r) ⊆ B‖ · ‖(r).

Proof. (i) If f ∈ B‖·‖(r), then by Proposition 2, ρ( ξfr ) ≤ ξ. Since ψ(0) = 0 and ψ is
convex, we have

ρ(f) = ρ

(
r

ξ
· ξf
r

)
≤ r

ξ
ρ

(
ξf

r

)
+

(
1 − r

ξ

)
ρ(0)

≤ r

ξ
· ξ = r

which shows that f ∈ Bρ(r).
(ii) If f ∈ Bρ(r), then ρ(f) ≤ r. Again using Proposition 2 together with the fact
ψ(0) = 0 and ψ convex will yield:

ρ

(
ξ

r
f

)
≤ ξ

r
ρ(f) +

(
1 − ξ

r

)
ρ(0) ≤ ξ

thus f ∈ B‖·‖(r). �
Remark 2. Notice that, although in the above proof of Proposition 3 we are using
the facts ψ(0) = 0 and ψ is convex, in fact what we need is ψ satisfying

ψ(ax) ≤ aψ(x) for 0 ≤ a ≤ 1 .

Corollary
Let D be a subset of Lψ. Then D is ψ-bounded implies D is ‖ · ‖-bounded.
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Proof. Since ψ is increasing if r1 ≤ r2, then D ⊂ Bρ(r1) implies D ⊂ Bρ(r2). Now
if D ⊆ Bρ(r) by (ii) of the previous proposition, we have

D ⊂ Bρ
(
max(r, ξ)

)
⊆ B‖·‖

(
max(r, ξ)

)
. �

Definition 2. Let D be a norm-bounded subset of Lψ. The norm n-th width of D
in the sense of Kolmogorov is denoted by dn‖ · ‖ and defined as

dn‖·‖(D) = inf{r > 0:D ⊆ B‖·‖(r) +An
where An is a vector space with dim of An ≤ n}

and norm-ball measure of non-compactness α‖ · ‖(D) is defined as

α‖·‖(D) = inf

{
r > 0:D ⊆

k⋃
i=1

B‖·‖(xi; r)

}
.

Here k is arbitrary but finite; notice that

k⋃
i=1

b‖·‖(xi; r) = B‖·‖(r) +
k⋃
i=1

{xi} .

Theorem 1

Let D be a ‖ · ‖-bounded subset of Lψ. Then

α‖·‖(D) = lim
n
dn‖·‖(D).

Proof. We obviously have α‖·‖(D) ≥ lim
n
dn‖·‖(D). To show the reverse inequality,

suppose we choose an admissible r and An such that D ⊂ B‖·‖(r) + An, then we
can write D ⊆ D1 + D2 where D1 ⊂ B‖·‖(r) and D2 ⊂ An. Observe that D2 is
‖ · ‖-bounded, because for every f ∈ D one has f = f1 + f2 where f2 ∈ D2 and

‖f2‖ = ‖f − f1‖ ≤ ‖f‖ + ‖f1‖ .

Now if we use the seminorm property in An which is finite, we obtain: for every
ε > 0, there exists a finite covering for D2 by balls of radius ε, i.e.

D2 ⊆
⋃

finite

B‖·‖(xi; ε) .

So B‖·‖(r) +B‖·‖(xi; ε) ⊆ B‖·‖(xi; r + ε) which implies α‖·‖(D) ≤ r + ε. �
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Remark 3. In the above proof to show

B‖·‖(r) +B‖·‖(xi; ε) ⊆ B‖·‖(xi; r + ε)

we used the triangle property of our norm. But all we need is

‖f + g‖ ≤ ‖f‖ + C‖g‖ for fixed C > 0.

This inequality holds if the Orlicz function ψ satisfies the condition:

ψ(ax+ by) ≤ aψ(x) + bCψ(y)

with a+ bC = 1, a, b ≥ 0 C > 0 fixed.

Notice that by replacing norm-balls by ρ-balls in Definition 2, one can similarly
define modular n-width of D, dnρ (D) and modular-ball measure of non-compactness
αρ(D) for a ρ-bounded subset D as follows:

dnρ (D) = inf{r > 0:D ⊆ Bρ(r) +An where An

is a vector space with dim of An ≤ n}

αρ(D) = inf

{
r > 0:D ⊂

k⋃
i=1

Bρ(xi; r)

}
.

Obviously we have lim
n
dnρ (D) ≤ αρ(D). Therefore, one can ask whether The-

orem 1 type of equality holds with respect to modular, too. Following Theorem 2
gives an affirmative answer to this question in case ψ satisfies ∆2-condition. Later
by Theorem 3 we give partial answers to the same questions in case ψ does not
satisfy ∆2-condition.

Theorem 2

Suppose that ψ satisfies the ∆2-condition, then for a ρ-bounded subset D of Lψ

we have:

lim
n→∞

dnρ (D) = αρ(D).
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Proof. Since D is ρ-bounded, there exists M with ρ(d) ≤ M for all d ∈ D. On the
other hand, since ψ satisfies ∆2-condition, there are K,C > 0 such that ρ(2f) ≤
Kρ(f) + C. Now choose an admissible r and An such that D ⊂ Bρ(r) + An. Next
we claim that there is K1 such that ρ(x) ≤ K1 for each x ∈ An ∩ D, because if
x ∈ An ∩D, then x = x1 − x2 with x1 ∈ D and x2 ∈ D ∩Bρ(r) and hence

ρ(x) = ρ

(
2x1 − 2x2

2

)
≤ 1

2
ρ(2x1) +

1
2
ρ(2x2)

1
2
Kρ(x1) +

1
2
Kρ(x2) + 2C ≤ 1

2
KM +

1
2
KM + 2C.

Now choose K1 so that k1
ξ ≥ 1, then using convexity we have ρ( ξ

K1
x) ≤

ξ
K1
ρ(x) ≤ ξ which implies that ‖x‖ ≤ K1. Since An ∩ D is norm-bounded and

finite dimensional, for any ε > 0, there exists {yi}ni=1 such that

An ∩D ⊂
⋃

finite

B‖ ‖(yi; ε), 0 < ε < 1.

Using Proposition 3 (i), (take ξ = 1) we obtain

D ⊂ Bρ(r) +
⋃

finite

Bρ(yi; ε) ⊆
⋃

finite

B(yi; r + ε)

which implies αρ(D) ≤ lim
n→∞

dnρ (D). �

Lemma 1
Suppose D is a ρ-bounded subset of Lψ, then we have one of the following:

(i) αρ(D) ≥ α‖·‖(D) ≥ ξ
(ii) αρ(D) ≤ α‖·‖(D) < ξ
(iii) α‖·‖(D) = ξ .

Proof. Case 1. Suppose αρ(D) ≥ ξ. Then using Proposition 3(ii), we have r+ ≥
α− ρ(D) ≥ ξ such that

D ⊂
⋃

finite

Bρ(xi; r+) ⊆
⋃

finite

B‖·‖(xi; r+)

which implies α‖·‖(D) ≤ αρ(D).
Case 2. Suppose α‖·‖(D) < ξ. Then there is r+ such that α‖·‖(D) ≤ r+ < ξ.

But by Proposition 3 (i) we have

D ⊂
⋃

finite

B‖·‖(xi, r+) ⊆
⋃

finite

Bρ(xi, r+)

and therefore αρ(D) ≤ α‖·‖(D) < ξ. �
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Lemma 2

Suppose D is a ρ-bounded subset of Lψ, then we have only one of the following:

(i) δρ(D) ≥ δ‖·‖(D) ≥ ξ
(ii) δρ(D) ≤ δ‖·‖(D) < ξ
(iii) δ‖·‖(D) = ξ

where δ‖·‖(D) = lim
n
dn‖·‖(D) and δρ(D) = lim

n
dnρ (D).

Proof. Case 1. Suppose δρ(D) ≥ ξ, then there is r+ ≥ δρ(D) ≥ ξ and An such that

D ⊂ Bρ(r+) +An ⊆ B‖·‖(r+) +An .

In the last inclusion we used Proposition 3(ii) again. Thus we have{
δ‖·‖(D) ≤ δρ(D)

δρ(D) ≥ ξ

Case 2 of this Lemma is similar to Case 2 of Lemma 1. �
Combining the results in Lemma 1 and Lemma 2 and Theorem 1 we obtain:

Theorem 3

Let D be a ρ-bounded subset of Lψ, then we have one of the following:

(i) αρ(D) ≥ δρ(D) ≥ α‖·‖(D) = δ‖·‖(D) ≥ ξ
(ii) δρ(D) ≤ αρ(D) ≤ α‖·‖(D) = δ‖·‖(D) < ξ
(iii) δ‖·‖(D) = α‖·‖(D) = ξ .

Remark 4. Combining Remark 2 after Proposition 3 and Remark 3 after Theorem
1 we deduce that the conditions we need to put on ψ in order for the above theorem
to hold are:

1. ψ(0) = 0
2. ψ(ax+ by) ≤ aψ(x) + bψ(y) with a+ bC = 1 a, b ≥ 0, C > 0 fixed.

These two conditions together imply that ψ(ax) ≤ aψ(x), which implies that ψ
is increasing. Also condition 2 above implies ψ is lower semicontinuous.

It is clear that condition 2 is satisfied by convex functions but does not imply
convexity for ψ. Therefore Theorem 1 and 3 are valid for larger classes of functions
than convex functions. For example, the function

ψ(x) = min
(
x,max

(1
2
x,

3
2
x− 1

2

))

satisfies the conditions given in Remark 4 for C = 2.
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