1,885 research outputs found

    Designing a design thinking approach to HRD

    Get PDF
    This article considers the value of design thinking as applied to a HRD context, Specifically, it demonstrates how design thinking can be employed through a case study drawn from the GETM3 programme. It reports on the design, development, and delivery of a design thinking workshop which was created to draw out and develop ideas from students and recent graduates about the fundamental training and skills requirements of future employment. While design thinking has been widely deployed in innovation and entrepreneurship, its application to HRD is still very much embryonic. Our overview illustrates how the key characteristics of the design thinking process resonate with those required from HRD (e.g. focus on end user, problem solving, feedback, and innovation). Our contribution stems from illuminating a replicable application of design system thinking including both the process and the outcomes of this application. We conclude that design thinking is likely to serve as a critical mind-set, tool, and strategy to facilitate HRD practitioners and advance HRD practice

    Designing a Design Thinking Approach to HRD

    Get PDF
    This article considers the value of design thinking as applied to a HRD context, Specifically, it demonstrates how design thinking can be employed through a case study drawn from the GETM3 programme. It reports on the design, development, and delivery of a design thinking workshop which was created to draw out and develop ideas from students and recent graduates about the fundamental training and skills requirements of future employment. While design thinking has been widely deployed in innovation and entrepreneurship, its application to HRD is still very much embryonic. Our overview illustrates how the key characteristics of the design thinking process resonate with those required from HRD (e.g. focus on end user, problem solving, feedback, and innovation). Our contribution stems from illuminating a replicable application of design system thinking including both the process and the outcomes of this application. We conclude that design thinking is likely to serve as a critical mind-set, tool, and strategy to facilitate HRD practitioners and advance HRD practice

    Evaluating Interaction Techniques in an Interactive Workspace: Comparing the Effectiveness of a Textual Interface, Virtual Paths Interface, and ARIS

    Get PDF
    ARIS is an interface that enables users to visually relocate applications and redirect input among myriad devices in an interactive workspace. While we previously claimed that ARIS is more effective than other interfaces for performing these tasks, this work seeks to empirically validate our claim. We compared the use of ARIS to an interaction design of a text-based and virtual paths interface for relocating applications and redirecting input in an interactive workspace. Results show that (i) users can relocate applications and redirect input faster with ARIS than a text-based interface, (ii) users commit fewer errors with ARIS than a text-based interface, (iii) users experience less workload and are more satisfied with ARIS than a text-based interface, and (iv) ARIS was comparable to the use of a virtual paths interface. ARIS is more effective than an interaction design that requires a user to mentally map and select textual identifiers, while supporting functionality beyond that of a virtual paths interface

    Master of Science

    Get PDF
    thesisTurbulent dispersion is one of the most important transport mechanisms in the life cycle of many fungal plant pathogens. Without turbulent dispersion, inoculum spread would be confined to adjacent leaves, limiting the severity of epidemics. Thus, understanding the mechanisms that influence and control dispersion from disease foci are of primary importance towards improving our ability to prevent and respond to disease outbreaks. In sparse canopy environments, the influence of canopy geometry (row spacing, canopy height, and plant density) on turbulent fluxes can be problematic for traditional dispersion modeling techniques that rely on assumptions of steady or horizontally homogeneous velocity fields. Here, the link between canopy geometry, turbulent fluxes and particle dispersion gradients in sparse agricultural canopies was explored using a Lagrangian particle dispersion model linked to velocity fields from large-eddy simulations. In particular, particle dispersion from line sources in plant canopies with geometry characteristic of grape vineyards were examined. Simulations were performed with varying row spacing and plant density to characterize particle dispersion within the canopy over a large range of length scales. It was of primary importance to examine how changing plant geometry could limit the spread of pathogens over large length scales, thus limiting the speed at which epidemics spread. Unresolved particle motion was modeled by solving a form of the Langevin equation and particle deposition onto vegetation is modeled using a stochastic technique. Results show that as overall canopy density decreases, bulk velocity in the canopy increases exponentially. This has a substantial impact on particle concentrations downstream of the source, as mean particle velocity influences concentrations. Furthermore, as canopy density decreases, particles tend to travel further before being deposited. However, as canopy density decreases, fewer particles tend to escape the canopy, which corresponds to a lower probability of long-distance transport. Thus, in less dense geometries, particles tend to spread further in near-source areas inside the canopy, but transport is more likely to be confined to smaller length scales. More dense canopies tend to limit transport near the source due to increased drag and deposition, but increased canopy escape increases the probability of transport over large length scales

    A Framework for Specifying and Monitoring User Tasks

    Get PDF
    Knowledge about user task execution can help systems better reason about when to interrupt users. To enable recognition and forecasting of task execution, we develop a novel framework for specifying and monitoring user task sequences. For task specification, our framework provides an XML-based language with tags inspired by regular expressions. For task monitoring, our framework provides an event handler that manages events from any instrumented application and a monitor that observes a user's transitions within and among specified tasks. The monitor supports multiple active tasks and multiple instances of the same task. The use of our framework will enable systems to consider a user's position within a task model when reasoning about when to interrupt

    Water Quality Trends across Select 319 Monitoring Sites in Northwest Arkansas

    Get PDF
    Northwest Arkansas contains two 319 priority watersheds that the Arkansas Natural Resources Commission has identified as being impacted by point source and nonpoint source pollution (i.e., phosphorus, nitrogen, and sediment). This project specifically focused on determining water quality trends at select sites within the Illinois River (HUC# 11110103) and Beaver Reservoir (HUC# 11010001) priority watersheds, including Ballard Creek, Osage Creek, Illinois River, White River, West Fork White River and the Kings River where sufficient constituent data were available. Water quality trends were analyzed using flow‐adjusted constituent concentrations of phosphorus, nitrogen, sediment, sulfate and chloride, and parametric and non‐parametric statistical techniques to determine if constituent concentrations were increasing, decreasing or not significantly changing over time. Overall, flow‐adjusted concentrations of phosphorus and sediment have been decreasing across these watersheds based upon both statistical approaches. The decrease in phosphorus was likely the most important observation, because most water quality concerns in this region have focused on elevated phosphorus concentrations in these transboundary watersheds. These trends can be used along with other watershed information to improve the knowledge of how past, current, and future management decisions have influenced the watershed

    Helios: A Scalable 3D Plant and Environmental Biophysical Modeling Framework.

    Get PDF
    This article presents an overview of Helios, a new three-dimensional (3D) plant and environmental modeling framework. Helios is a model coupling framework designed to provide maximum flexibility in integrating and running arbitrary 3D environmental system models. Users interact with Helios through a well-documented open-source C++ API. Version 1.0 comes with model plug-ins for radiation transport, the surface energy balance, stomatal conductance, photosynthesis, solar position, and procedural tree generation. Additional plug-ins are also available for visualizing model geometry and data and for processing and integrating LiDAR scanning data. Many of the plug-ins perform calculations on the graphics processing unit, which allows for efficient simulation of very large domains with high detail. An example modeling study is presented in which leaf-level heterogeneity in water usage and photosynthesis of an orchard is examined to understand how this leaf-scale variability contributes to whole-tree and -canopy fluxes
    corecore