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ABSTRACT

Turbulent dispersion is one of the most important transport mechanisms in the

life cycle of many fungal plant pathogens. Without turbulent dispersion, inoculum

spread would be confined to adjacent leaves, limiting the severity of epidemics. Thus,

understanding the mechanisms that influence and control dispersion from disease foci

are of primary importance towards improving our ability to prevent and respond to

disease outbreaks. In sparse canopy environments, the influence of canopy geometry

(row spacing, canopy height, and plant density) on turbulent fluxes can be problematic

for traditional dispersion modeling techniques that rely on assumptions of steady or

horizontally homogeneous velocity fields. Here, the link between canopy geometry,

turbulent fluxes and particle dispersion gradients in sparse agricultural canopies was

explored using a Lagrangian particle dispersion model linked to velocity fields from

large-eddy simulations. In particular, particle dispersion from line sources in plant

canopies with geometry characteristic of grape vineyards were examined. Simulations

were performed with varying row spacing and plant density to characterize particle

dispersion within the canopy over a large range of length scales. It was of primary im-

portance to examine how changing plant geometry could limit the spread of pathogens

over large length scales, thus limiting the speed at which epidemics spread. Unresolved

particle motion was modeled by solving a form of the Langevin equation and particle

deposition onto vegetation is modeled using a stochastic technique.

Results show that as overall canopy density decreases, bulk velocity in the canopy

increases exponentially. This has a substantial impact on particle concentrations

downstream of the source, as mean particle velocity influences concentrations. Fur-

thermore, as canopy density decreases, particles tend to travel further before being

deposited. However, as canopy density decreases, fewer particles tend to escape the

canopy, which corresponds to a lower probability of long-distance transport. Thus,

in less dense geometries, particles tend to spread further in near-source areas inside



the canopy, but transport is more likely to be confined to smaller length scales. More

dense canopies tend to limit transport near the source due to increased drag and

deposition, but increased canopy escape increases the probability of transport over

large length scales.

iv



For my wonderful parents.
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CHAPTER 1

INTRODUCTION

The increase in manufacturing and technology has widely shaped the modern

world we live in. However, one cannot neglect the central role plants play in the life of

every human and animal. Plants make up all of the food in which all animals consume,

directly or indirectly. Not only do humans eat plants, the animals humans eat also feed

on plants. Consequentially, sustaining the productivity of the agricultural industry

is of great importance. A secure food supply is important, not only for feeding the

human population, but also because of its importance in the local and global economy.

The spread of disease-causing pathogens in plant canopies is an important factor in

the volume and quality of crop yield. Plants become infected by pathogenic microor-

ganisms in a very similar way that humans become infected. Disease outbreaks can

be detrimental economically to growers and impact the security of the food supply.

It is estimated that diseases interfere with or destroy approximately 15% of crops

produced globally, which accounts for losses totaling about $220 billion [1]. The

ability for growers to limit the spread of disease within agricultural canopies can be

directly linked to the quality and quantity of crop yield.

1.1 Plant Pathology

This research focuses on the spread of disease in agricultural canopies, specifically

the transport of Erysiphe necetor (powdery mildew of Vitis vinifera L., grapes) spores

in grape vineyards. The severity of diseases caused by pathogens are strongly linked

to the distance and speed that spores can travel from initial sources of inoculum.

Without dispersion, many epidemics would not progress [34]. Spores have no way

of physically transporting themselves and must be carried by moving objects or

materials. One mechanism for spore spread is transport by attachment to physical

objects which move [1] (i.e., water, living organisms, farming equipment, etc.) In
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general, this mechanism offers relatively slow transport which occurs over small scales

[34]. Another mechanism which offers greater potential for epidemic spread is wind

transport [1]. The turbulent ABL can transport large quantities of spores across large

length scales, making it the primary transport mechanism for many pathogens [5, 34].

Therefore, understanding turbulent transport of spores is of primary importance

toward understanding plant disease epidemiology.

For perennial plants like grape vines, the existence of the plant canopy has a

strong impact on turbulent fluxes [16] and presumably on spore transport through the

canopy. While a strong understanding of how continuous canopies impact turbulent

transport processes and flow structures has started to develop [16, 17, 47, 49, 53],

the same cannot be said of discontinuous or sparse canopies where a substantial

percentage of the canopy is open. Motivated by the importance of turbulent transport

in epidemic development and by the sparse nature of most vineyards, this research

examines how plant canopy geometry (specifically row spacing and plant density)

interacts with atmospheric flow characteristics to impact the dispersion of airborne

plant pathogen spores in grape vineyards using a computational model.

1.2 Methods for the Simulation of Canopy Flows

Numerical simulations can be a valuable tool for understanding and analyzing

the flow field in and above canopies. Field experiments can be expensive and time-

consuming and can result in sparse data sets. They also limit studies to physical ge-

ometries and conditions that are currently available to the experimentalist. Numerical

simulations can be conducted for a wide variety of flow conditions and geometries in a

relatively short period of time. They also generally provide much more finely resolved

data than experiments, with the limiting factor being the accuracy of turbulence

models and the ability to specify boundary and initial conditions.

The simulation of the turbulent atmospheric boundary layer can pose many chal-

lenges due to the complexity of the flow. Furthermore, the addition of a sparse

vegetative canopy to the simulation domain can present additional complications.

Some of these challenges, as well as their implications on available simulation methods

will be presented in the following sections.
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1.2.1 Simulation of Turbulent Flows

The complexity of turbulent flows makes numerical simulation a challenging task.

The velocity field is three-dimensional, time-dependent, and random-like. Further-

more, there exists a wide range of length scales in turbulent flow, the largest on the

order of the characteristic width of the flow and the smallest being the Kolmogorov

length. The ratio of the smallest to largest scales in the flow scales as Re−3/4 [44].

Thus, as the Reynolds number increases, the smallest scales becomes smaller and

the range of length scales becomes larger. In turbulent flow simulations, all length

scales must be resolved or modeled. Atmospheric flows have a large Reynolds number

(> 105), and have a corresponding Kolmogorov length scale on the order of 1 mm. Any

length scales that are not explicitly resolved in the simulation must instead be modeled

[44]. Such models can be difficult to formulate considering they must accurately

represent the complex dynamics of turbulent flows as generally as possible. Since

most models are not able to generalize to any arbitrary flow, models are commonly

applicable to only limited types of flows to which they have been tailored.

1.2.2 Governing Equations

General atmospheric flow is governed by the Navier-Stokes equations, in which

a set of equations are solved for the air velocity components and possibly scalars of

interest. The first important equation in the set is the conservation of mass equation,

which can be written as

Dρ

Dt
+ ρ

∂ui

∂xi

= 0, (1.1)

where t is time, ui (i = 1, 2, 3 = stream-wise, span-wise, vertical) represents the three

components of the velocity, x is the spatial coordinate system, and ρ is air density,

and D/Dt is the material derivative. For canopy flows, the air can be approximated

as incompressible, thus Dρ/Dt = 0. With this assumption, eqn. 1.1 becomes

∂ui

∂xi

= 0. (1.2)

Momentum transport is governed by the following linked set of equations (written

in nondimensional form):
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∂ui

∂t
+
∂uiuj

∂xj

= −δi3Tv − 〈Tv〉
To

ĝ +
1

Ro
εij3uj − ∂p

∂xi

+
1

Re

∂2uj

∂x2
j

+ Fi, (1.3)

where t is time, ui (i=1,2,3) represents the three components of the velocity, x is

the spatial coordinate system, Tv is potential temperature where the angle brackets

represent a horizontal average, To is a buoyancy reference temperature, g is the

acceleration due to gravity, δ is the Kronecker delta tensor, Ro is the Rossby number,

ε is the permutation tensor, p is the nondimensional pressure, Re is the Reynolds

number, and Fi is a general forcing term. Buoyancy effects are modeled using the

Boussinesq approximation [37], and rotational effects have been considered.

When eqn. 1.3 is applied specifically to canopy flows, several simplifications can

be made.

1. If only neutral flow is considered, buoyancy effects become negligible and the

buoyancy term can be eliminated.

2. For domain heights of a few canopy heights, the Rossby number is generally

large and rotational effects can be neglected.

3. Since the Reynolds number is very large for canopy flows, molecular diffusion

can be neglected.

With these assumptions, eqn. 1.3 reduces to

∂ui

∂t
+
∂uiuj

∂xj

= − ∂p

∂xi

+ Fi. (1.4)

Using the previous assumptions, an equation for the transport of a general scalar

can be written as

∂θ

∂t
+
∂ujθ

∂xj

= Q, (1.5)

where θ is a general scalar, and Q is a source term.
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1.2.3 Direct Numerical Simulation

Direct Numerical Simulation (DNS) involves solving the governing equations de-

scribing the transport of momentum and scalar quantities in the atmospheric bound-

ary layer with a computational grid fine enough to resolve the smallest turbulent

length scales [44]. Direct numerical simulation (when applicable) is the simplest

modeling approach, where any inaccuracies in the solution lie in the equations them-

selves, boundary conditions or in the numerical solution, as all terms in the governing

equations can be explicitly calculated. This can provide valuable insight into the

turbulent flow field, as the turbulence is directly calculated instead of modeled.

DNS is not generally used in the study of the ABL or plant canopies because of

the large computational cost associated with the fine grid requirements. To perform

DNS of a 1 km3 turbulent ABL, it would require on the order of 1018 grid points to

resolve the smallest turbulent length scales. A simulation at this grid resolution is

not feasible with current computational resources, as computational time would be

on the order of years. In the future (i.e., 30-50 years), if computational capabilities

continue to increase as expected, it may be possible to use DNS as a tool in studying

the atmospheric boundary layer [65].

1.2.4 Reynolds-Averaged Navier Stokes

Another popular method for simulating turbulent flows is to solve the Reynolds

equations for the mean variables. This method is commonly called Reynolds-Averaged

Navier Stokes or RANS [44]. The Reynolds equations are obtained by decomposing

the total velocity into a mean and fluctuating component,

ui = ui + u′i, (1.6)

and similarly for scalar variables,

θ = θ + θ′, (1.7)

where an over-bar represents the mean component, and a prime represents the fluctu-

ating component. When this representation of the turbulent field is substituted into

eqns. 1.2 and 1.4, the following Reynolds equations are obtained
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∂ui

∂xi

= 0, (1.8)

∂ui

∂t
+
∂uiuj

∂xj

= − ∂p

∂xi

− ∂u′iu
′
j

∂xj

+ Fi. (1.9)

The resulting Reynolds equations are similar to the previous equations, but now

the dependent variables are mean quantities and a new term on the RHS of eqn

1.9 presents itself. This term, commonly referred to as the Reynolds stress term,

represents all of the effects of turbulence. Unfortunately, there is no known equation

to calculate this term, which results in an equation set that cannot be solved. In

order to solve this set of equations, the Reynolds stress term must be modeled.

The Reynolds stresses are generally modeled either using the turbulent-viscosity

hypothesis or by directly solving modeled transport equations for the Reynolds-stress

[44]. The turbulent-viscosity hypothesis states that the Reynolds stress is proportional

to the mean strain rate,

−uiuj = 2νTSij, (1.10)

where Sij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, νT is referred to as the turbulent viscosity or eddy

viscosity. With the specification of νT , the Reynolds equations become a closed

set of equations that can be solved for the mean velocity field. There have been a

wide variety of models proposed to calculate νT , ranging in complexity from algebraic

models to differential transport equations for turbulence quantities (see Wilcox 2006

[69]).

As previously mentioned, the Reynolds stress term may also be calculated by solv-

ing a transport equation for each Reynolds stress component, u′iu
′
j, and a turbulence

quantity that provides a length or time scale (such as dissipation rate ε.) This type

of model has a better level of description and completeness than turbulent-viscosity

models, but also significantly increased computational cost.

Similarly, this approach can be applied to eqn. 1.5, which results in the mean

scalar equation
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∂θ

∂t
+
∂ujθ

∂xj

= −∂u
′
jθ
′

∂xj

, (1.11)

where averaging results in a similar RHS term, commonly called the scalar flux,

which accounts for all turbulence in the scalar field. This term is generally modeled

according to the gradient-diffusion hypothesis, which states that the scalar flux is

transported down the mean scalar gradient [44]. According to this hypothesis, the

scalar flux is calculated as

u′jθ′ = −DT
∂θ

∂xj

, (1.12)

where DT is the turbulent diffusivity.

RANS has been reliably used to model the ABL for nearly 40 years. This

method offers significant cost savings over DNS because of its much looser resolution

requirements. However, since all turbulence is modeled, the choice of such turbu-

lence models can greatly influence simulation results. Initially, efforts were directed

towards modeling buoyancy-driven atmospheric surface layer flows. Several models

were proposed that used second-order closure models that assume simple gradient

transport for third-order fluxes [27, 77, 76]. Zeman and Lumley [80] proposed a

model that better simulates buoyancy-driven flows by including buoyancy-turbulence

interactions. Mellor and Yamada [35] proposed a model that can be applied to a

wide variety of engineering and geophysical flows that compared well with numerous

experimental data sets. More recently, RANS closure models have been proposed

that are able to simulate vegetative flows. Wilson and Shaw [71] first proposed a

one-dimensional model that neglected buoyancy effects for flow within vegetative

canopies. Finnigan [15] and Raupach et al. [48] proposed models that used volume

averaging instead of horizontal averaging, and many models have since been proposed

that use various other types of averaging [29, 66].

Canopy flows present problems inherent in RANS modeling. One of the most

important problems with all RANS modeling is the fact that only mean variables

are obtained and all turbulence is modeled. This means that the solution gives no

insight into the turbulence, and results are entirely dependent on the chosen model.

In the canopy, turbulence is dominated by large, intermittent structures with length
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scales on the order of the canopy height [16]. The intermittency of the canopy is not

captured by RANS simulations, which is a difficult feature to capture for any local

closure model [54]. Since transport is dominated by large-scale coherent structures

[16], the assumption that transport is a diffusion process is generally not accurate.

Recently, other methods of turbulent canopy flow simulation have gained popularity

which, in general, better model these types of flows.

1.2.5 Large-Eddy Simulation

Large-eddy simulation (LES) is a method for simulating turbulent flows that has

become popular among researchers over the last few decades [13, 6, 37, 54, 42]. LES

is a compromise between DNS and RANS in that it achieves some of the accuracy

of DNS by resolving a significant percentage of the turbulence, and some of the cost

savings of RANS by modeling the unresolved turbulence. In LES, the velocity (and

other variables) are separated into a resolved and filtered component

ui = ũi + u′i, (1.13)

where the tilde denotes the resolved component and the prime denotes the filtered

component. The resolved component is found by applying a low-pass filter to the

velocity field, which results in a field with characteristic turbulent length scales larger

than the filter width, ∆. The filtered component, which is presumably less important,

is modeled. When the filter is applied to eqns. 1.2, 1.4 and 1.5 we obtain

∂ũi

∂xi

= 0, (1.14)

∂ũi

∂t
+
∂ũiũj

∂xj

= − ∂p̃

∂xi

− ∂τij
∂xj

+ Fi, (1.15)

∂θ̃

∂t
+
∂ũj θ̃

∂xj

= − ∂qi
∂xj

. (1.16)

The effects of the subfilter scales (SFS) on the dependent variables appear in the SFS

stress and flux terms, τij and qi, respectively. These terms are defined as
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τij = ũiuj − ũiũj and (1.17)

qi = ũiθ − ũiθ̃. (1.18)

There are no known equations to directly calculate the SFS stress and flux, therefore

they must be modeled using information from the resolved variables. There is more

flexibility in the formulation of SFS models for LES than RANS due to the fact that

a large portion of the turbulence is resolved. The SFS model is most important near

walls or any high shear region, where the fraction of unresolved energy to total energy

is relatively large [46].

There have been numerous SFS models proposed, with the most common being

eddy-viscosity/eddy-diffusivity models [37], similar to those previously discussed for

RANS (see eqns. 1.10 and 1.12). As with RANS, there have been numerous methods

proposed for modeling νT and DT , each with varying applicability and complexity

[57, 30, 13, 6, 19].

Large-eddy simulation was originally developed for meteorological applications

[57], and has since become a popular tool for studying the ABL. LES later developed

into a reliable tool for studying turbulence, where most researchers using LES were

interested in either geophysical or engineering flows. The earlier work in LES was

done studying simpler wall-bounded channel flows with the assumption of isotropic

turbulence [39, 43], with hopes that it could be applied to complex engineering flows

in the future. LES has since become the state-of-the-art tool in studying turbulent

flows [44].

LES has been applied to atmospheric canopy flows by a wide range of researchers.

Shaw and Schumann [54] performed LES of a forest canopy, where the canopy was

modeled as a porous drag source/sink. Patton et al. [42] simulated flow in wheat

canopy with intermittent windbreaks protruding from the top of the vegetation in

a similar manner. Due to limited resolution, the vast majority of researchers have

treated the vegetative canopy as a porous drag source, as Shaw and Schumann did

[42, 55, 79].

Because of its strength in atmospheric canopy flows, the author has chosen to use

LES in the study of flow in and around grape vineyards. LES is able to resolve large
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flow structures characteristic of canopy flows. Since much of the flow is resolved,

this will also allow for more flexibility when choosing particle dispersion models.

Furthermore, the intermittency of the canopy turbulence is captured in the LES,

which presumably plays a significant role in particle transport.

1.3 Modeling Particle Transport

Many researchers interested in atmospheric flows are also interested in how par-

ticles (i.e., tracers, pollutants, microorganisms, etc.) that are released into the

atmosphere will be transported by the turbulent wind field. In this research, the

interest is focused toward the transport of fungal pathogens in vegetative canopy

flows. There are many ways of modeling particle transport, but any type of model

relies on the fact that there is some information about the velocity field. With that

information, it can then be determined how particles are transported through the use

of a transport model.

The transport of particles may be viewed from two types of reference frames:

Lagrangian or Eulerian. Some researchers have chosen to study particle transport

from a fixed, or Eulerian reference frame [28, 3, 11]. Generally in this approach

a transport equation is solved for particle concentration throughout the domain.

For turbulent dispersion, this leads to a term which must be modeled due to the

nonlinear advection term (similar to eqn.1.9). One advantage to this method is that

the mean velocity can be obtained via relatively simple parameterizations, and the

turbulence effects can be modeled using K-theory [3]. This leads to a method that

can obtain relatively realistic results in areas sufficiently far from the source and

with low turbulence intensity [71]. An arguably better way of understanding particle

dispersion is from a Lagrangian framework where individual particle trajectories are

followed [23, 62, 4, 58, 67, 9]. When modeling particle transport in this framework,

particles are assumed to be passive tracers that move with fluid elements, and whose

positions can be calculated in terms of the velocity field that transports them

dxi

dt
= ui, (1.19)

where xi and ui are particle position and velocity in each Cartesian direction at
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any instant. This is a good assumption for flows with a sufficiently large Reynolds

number, where molecular diffusion of the ensemble mean concentration is very small.

Furthermore, it has been assumed that the drag force acting on particles is negligible,

which is generally true for particles with diameters smaller that 100 µm (modeled

particles are about 30 µm in diameter.) In complex flows where techniques such

as similarity theory (as proposed by Taylor in 1921 [63]) are not valid, Lagrangian

models tend to be much better suited for these types of problems, particularly complex

atmospheric flows [62]. They can be applied to a wider variety of situations, such as

non-Gaussian, inhomogeneous, unsteady turbulence.

Since large-eddy simulation was chosen as the primary tool for canopy modeling,

determining the total Lagrangian velocity that transports the particles is non-trivial.

Recall that the LES solution provides only the resolved velocity component. Since

the Lagrangian transport equation requires the total velocity, the unresolved portion

of the velocity must be modeled. Gopalakrishan and Avissar [21] argued that there

is no proper treatment for the SFS particle velocity, and thus they calculated particle

trajectories based only on the resolved velocity. The majority of researchers to date

have chosen to implement stochastic or random-walk models for the SFS particle

velocity [51, 58, 67, 25, 10]. Particles are assumed to behave in a Markovian or

“memory-less” manner. This is a reasonable assumption for large Reynolds number

flows like the ABL because particles are generally not autocorrelated over time scales

larger than the Kolmogorov time scale [40]. As long as the interval for calculating par-

ticle trajectories, ∆t, is much larger than the Kolmogorov time scale, this assumption

is generally reasonable. This concept was first applied to dispersion in canopies by

Wilson et al. in 1981 [72, 73, 74]. In 1987, Thomson [62] suggested a general stochastic

differential equation for the total Lagrangian velocity from which random-walk models

can be formulated. He also suggested the well-mixed criterion, which all models

should satisfy. The well-mixed criterion states that an initially well-mixed cloud of

particles must remain well-mixed. The difficulty of Thomson’s formulation is that

a unique solution cannot be found that satisfies his equation and also satisfies the

well-mixed criterion. Some particular solutions have been proposed, but each of these

models produce nontrivially different results for the same input velocity [7]. Many
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other models have been proposed which compare well to experimental data, but do no

necessarily apply to general cases (i.e., inhomogeneous, anisotropic, or non-Gaussian

turbulence) [31, 22, 8, 67, 10].

1.3.1 Particle Deposition

As spores travel through a canopy, some will come in contact with vegetative

elements (leaves, branches, trunks, etc.). Of those spores, some will deflect off of the

vegetation and back into the air, while some will become deposited onto vegetation

elements. Deposited spores may be released back into the air if local wind conditions

cause them to detach from the vegetation. This complex phenomenon poses great

difficulty when attempting to implement numerical models. It is not possible to

explicitly determine whether particles impact the canopy because it is not currently

possible to explicitly resolve all canopy elements. Instead, a model is used that will

hopefully accurately represent the deposition process on average. The formulation of

such statistical deposition models can be a difficult task. When this process is closely

examined, there are a seemingly endless number of variables to account for that can

impact deposition. Such possible variables are temperature, humidity, leaf flutter,

particle size/mass, presence of wake regions, vegetation surface texture, to name a

few. There are also other objects in the canopy that can remove particles such as

weeds, dead vegetation, cobwebs, etc.

Although the problem is generally considered to be unsolved (and potentially un-

solvable), there have been many researchers who have attempted to formulate models

for deposition of particles on vegetation. Those who view particle dispersion from an

Eulerian framework generally derive a differential equation that causes the canopy to

act as a sink for particle concentration in a similar manner as the canopy acts as a sink

for momentum [56, 50, 68]. These formulations generally rely on accurate specification

of the deposition velocity, which for particle sizes on the order of microns can be

uncertain by an order of magnitude or more [56]. Another type of deposition model,

generally referred to as “ballistic” models, involve using simple parameterizations

based on how far particles travel on average before they are deposited [41]. Ballistic

models may be able to replicate bulk statistics to some degree; however, they are not
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likely to provide accurate distributions of deposited particles in the canopy. Results

are also entirely dependent on the parameterization choice. A third type of model

involves calculating the probability of particle deposition at discrete time intervals.

Legg and Powell [28] proposed a model of this type that calculated the probability

of deposition as the sum of the probability of deposition due to horizontal impaction

and the probability of deposition due to vertical settling. Each term is based on

relatively well-studied concepts of particle impaction on cylinders, where the vertical

term assumes that all particles that settle onto the foliage by sedimentation adhere

to the surface [33, 52, 75]. Aylor [2] improved this model by determining an equation

for the efficiency of impaction by fitting to experimental data for vertical cylinders.



CHAPTER 2

NUMERICAL MODELS

2.1 LES Subfilter Scale Model

As previously discussed, large-eddy simulation has been chosen to model the tur-

bulent atmospheric boundary layer. The filtered Navier-Stokes equations, as written

in eqns. 1.14, 1.15 and 1.16, are assumed to exactly represent the turbulent flow field.

However, these do not represent a closed equation set, and therefore the SFS stress

and flux terms must be modeled. The model choice is an important factor in how

accurately the LES solution represents the actual flow, particularly at the sub-filter

scale [36].

An eddy viscosity model has been chosen to parametrize the SFS stresses and

fluxes. This model states that the deviatoric component of the SFS stress is propor-

tional to the filtered velocity gradients, and the SFS flux is proportional to the scalar

gradients, or

τij − 1

3
τkkδij = −2νT S̃ij, (2.1)

qi = −DT
∂θ̃

∂xi

, (2.2)

where νT is the eddy-viscosity, S̃ij = 1
2

(
∂ũi

∂xj
+

∂ũj

∂ui

)
is the filtered strain-rate tensor,

and DT is the eddy-diffusivity.

With the specification of νT and DT , a closed equation set is obtained. The eddy

viscosity, νT , has been specified as the product of a characteristic length and velocity

scale

νT = (Cs∆)2 |S̃|, (2.3)

where Cs∆ is a length scale and |S̃| = S̃ijS̃ij. Cs is referred to as the Smagorinsky

coefficient, named after Joseph Smagorinsky who first proposed the model in 1963



15

[57]. The eddy-diffusivity can be related to the eddy-viscosity via the SFS Schmidt

number, which can be used to write a model for the eddy-diffusivity as

DT = (Cs∆)2 Sc−1
sfs|S̃|, (2.4)

where Scsfs = DT/νT .

Although νT and DT has now been specified, Cs and Sc−1
sfs must also be specified

to complete the turbulence closure. The simplest model for Cs and Sc−1
sfs is to specify

them as constants [30]. This approach performs well only for simplified isotropic

cases, but performs poorly for anisotropic cases such as in the ABL [59]. This also

assumes that some information about the flow is available prior to the simulation that

helps choose reasonable values for Cs and Sc−1
sfs.

Germano [19] proposed a model in which the SFS coefficients are dynamically

optimized instead of specified a priori. In this study, the model proposed by Portè-

Agel et al. [45] is used which does not neglect scale dependence (which was neglected

by Germano) and uses Lagrangian averaging. This model has been well validated in

cases of neutrally stratified flow as well as buoyancy driven flows [59, 60].

2.1.1 Representation of the Canopy

Because of limited resolution, the canopy is modeled as a semi-continuous volume

which exerts a drag force on the flow, as done by Shaw and Schumann [53]. This

is done by adding a drag force term to the RHS of the conservation of momentum

equations

∂ũi

∂t
+
∂ũiũj

∂xj

= − ∂p̃

∂xi

− ∂τij
∂xj

+ Fi +Di, (2.5)

Di = cd a ũi Ṽ , (2.6)

where cd is the drag coefficient, a is the local leaf area density, ũi is the resolved

velocity component, and Ṽ is scalar wind speed. The leaf area density is defined as

the leaf surface area per canopy volume, and is generally determined experimentally.

An integrated measure of leaf density is the leaf area index (LAI) which is defined as
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LAI =

∫ H

0

a(z) dz, (2.7)

where H is canopy height, a is leaf area density (m2/m3), and z is vertical position.

2.2 Lagrangian Particle Dispersion Model

There are many methods for treating the SFS particle velocity, ranging from

neglecting it, to complex stochastic models. In the following chapters, simulation

results will be shown for several commonly used models and how these models improve

results over the “no-model” formulation.

2.2.1 Variance Model

The addition of a stochastic SFS velocity model generally should at the very least

improve results by improving the level of mixing achieved in the flow. Perhaps the

simplest version of a Lagrangian stochastic model is when the SFS particle velocity

is modeled as a random number scaled by some characteristic function. This can be

represented by

u′i = fi(x, y, z)η, (2.8)

where fi(x, y, z) is some scaling function, and η is a Gaussian random number with a

mean of zero and a standard deviation of one. The methods of Uliasz [64] have been

followed which chooses fi(x, y, z) to be the velocity variance, σi. However, since only

the resolved variance is available, the SFS particle velocity model can be written as

u′i = σ̃i(z)η, (2.9)

where σ̃i(z) is the resolved velocity variance at each discrete horizontal level.

Because of the choice for η, it has been assumed that the turbulence below the

filter scale is Gaussian, and since variances are calculated on horizontal planes, it has

also been assumed that the turbulence is horizontally homogeneous. These are not

good assumptions for many complex flows, particularly in a plant canopy. Vertical

velocity distributions generally show inhomogeneity and nonzero skewness, with the

vertical velocity skewness scaling as Skw ∼ w3/σ3
w [18].
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One obvious problem with this model is that since the resolved velocity is used, this

model opposes reality as resolution is increased/decreased. As resolution is increased,

the flow becomes better resolved, and as a result the SFS component of the velocity

should tend toward zero. With this model, the SFS velocity becomes larger as the

flow becomes better resolved. Granted there is a stochastic component to the SFS

velocity, this model does not exhibit the expected trends.

2.2.2 Langevin Equation Model

In 1987, Thomson [62] presented his general form stochastic differential equation

for the Lagrangian velocity, which can be written as

duLi = aidt+ bdξi, (2.10)

where dt is the trajectory time step, ξi is an increment of a Weiner process that is

uncorrelated in each direction, and ai and b are functions to be determined.

In this research, the formulation of Weil et al. [67] has been adopted, who wrote

eqn. 2.10 as

du′i =

(
−fsCoε

2
λiku

′
k +

1

2

(
λlj

dτil
dt

u′j +
∂τil
∂xl

))
dt+ (fsCoε)

1/2 dξi, (2.11)

where Co is a model constant (4 ± 2 [62]), ε is the turbulence dissipation rate, τij is

the SFS stress tensor, λij is the inverse of the SFS stress tensor, and fs is defined as

fs =
〈es〉

〈es〉+ 〈er〉 , (2.12)

where 〈es〉 and 〈er〉 are the SFS and resolved turbulent kinetic energy averaged over

horizontal planes, respectively. The first term in eqn. 2.11 is deterministic and

accounts for the drift of the particle. The second term is a stochastic forcing term

that reflects the random-like motions of particles in response to turbulent fluctuations.

Equation 2.11 can be applied in cases of inhomogeneous, anisotropic, Gaussian

turbulence, with the assumption that the change in the resolved velocity, δũi is small

during particle transport through a grid cell (δũi/ũi ¿ 1).
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In cases of isotropic turbulence below the filter scale, the SFS stress tensor can

be written as τij = δijσ
2
s , where σ2

s = 2es/3. With this substitution for τij, eqn. 2.11

reduces to

du′i =

(
−fsCoε

2

u′i
σ2

s

+
1

2

(
1

σ2
s

dσ2
s

dt
u′j +

∂σ2
s

∂xi

))
dt+ (fsCoε)

1/2 dξi. (2.13)

Since a Smagorinsky model is used for the large-eddy simulation, there is no

explicit calculation of the SFS TKE or dissipation. An approximation of es can be

made by adopting the methods of Mason and Callen [32]

es =

(
∆Cs|S̃|

)2

0.3
, (2.14)

The turbulence dissipation rate is found by assuming that the ε is equal to the SGS

dissipation rate (see eqn. 2.15.) This assumption is valid on average if the filter cutoff

frequency lies in the inertial subrange.

ε = Π = −τijS̃ij = −1

2
(∆Cs)

2 |S̃|3. (2.15)

2.3 Foliage Deposition Model

As particles travel through a canopy, some particles impact canopy elements and

will either become deposited or be reflected away. This effect may have an important

effect on concentration gradients, especially for release heights less than the canopy

height. Thus, a canopy deposition model has been implemented that will be compared

to results where no model was used.

The methods of Aylor [2] have been followed, who formulated an equation for the

probability of particle deposition over a time step, which can be written as

Gv = vsf
xaExdt+ uf zaEzdt, (2.16)

where vs is the particle settling velocity, fx and f z are fractions of the plant area

projected onto horizontal and vertical planes, u is the horizontal particle velocity, Ex

and Ez are the efficiency of horizontal and vertical deposition, a is the plant area
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density, and dt is the time step of particle trajectories. The first term represents

the probability of deposition due to settling, and the second term represents the

probability of deposition due to horizontal impaction.

The horizontal absorption efficiency, Ex, is assumed to be 1 [28, 2]. The vertical

absorption efficiency, Ez, is calculated based on Aylor’s fit to data for impaction to

circular cylinders [2]

Ez =
0.86

1 + 0.442 (|u|τR/Lv)
−1.967 , (2.17)

where Lv is the characteristic size of vegetation elements, and τR is the particle

relaxation time which was calculated as τR = vs/g [12]. To determine whether the

particle is deposited, a random number, Z, is chosen from a uniform distribution

between 0 and 1. If Gv > Z, the particle is indefinitely deposited and its position is

no longer updated. If Gv < Z, the particle is unaffected and trajectory calculations

continue.



CHAPTER 3

MODEL VALIDATION

3.1 Computational Code

Computer codes were developed to perform large-eddy simulations (LES) and

Lagrangian particle dispersion simulations. They were created to implement the

previously described numerical models in an accurate and efficient manner. These

codes will be described in detail in the following two sections.

3.1.1 LES Code

A highly parallel code was developed in the FORTRAN language to perform large-

eddy simulation of the turbulent canopy field. Because of the large computational

cost of performing LES of the ABL, the code divides the workload amongst a large

number of processors, each with their own separate memory. Processors transfer data

amongst themselves when necessary via Message Passing Interface (MPI), which was

developed at Argonne National Laboratories. The data is divided amongst processors

into blocks that are continuous in the stream-wise (x) and vertical directions (z), and

discontinuous in the span-wise (y) direction. Figure 3.1 shows one possible parallel

configuration.

The code solves the filtered conservation of momentum and scalar concentration

equations written in advective form

∂ũi

∂t
+ ũj

(
∂ũi

∂xj

− ∂ũj

∂xi

)
= −∂p̃

∗

∂xi

− ∂τij
∂xj

+ Fi +Di, (3.1)

where p̃∗ = p̃ + 1
2
ũiũj is the filtered dynamic pressure, and all other variables are as

previously defined.

The domain is discretized into equally spaced intervals of spacing ∆x, ∆y, ∆z.

Equation 3.1 is discretized in the vertical direction using central finite-differences,

which result in discretization errors of order (∆z)
2. Derivatives in the horizontal
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Figure 3.1. Possible parallelization scheme for LES code.
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directions are calculated using pseudospectral methods, which generally result in

discretization errors smaller than the order of (∆x)
6 and (∆y)

6. Equation 3.1 is

integrated in time using an Adams-Bashforth scheme [14], which results in discretiza-

tion errors of order (∆t)
2. Calculations are done on a grid that is collocated in the

horizontal direction, and staggered in the vertical direction. Calculation of ũ3 is done

starting at z = 0, and calculation of ũ1, ũ2, and p̃∗ is done starting at z = ∆z/2.

Filtering is done using a sharp spectral cutoff filter, which filters out length scales

smaller than ∆, where ∆ = (∆x∆y∆z)
1/3. Test filtering for the SFS model is done at

scales of 2∆ and 4∆, which is also done spectrally.

Horizontal boundaries are assumed periodic as required by the pseudospectral

numerics used. The upper boundary condition is such that there is no stress/flux at

the top of the domain, or ∂ũ1/∂x3 = ∂ũ2/∂x3 = 0. The value of τi3 is needed lower

boundary. These values are found by applying Monin-Obukhov similarity theory

locally at every point on the surface [37, 32, 59]. The Monin-Obukhov similarity

states that

U =
u∗
κ

[
ln

(
z

zo

)
− ψM

]
, (3.2)

where u∗ is the friction velocity, κ is the Von Karman constant (= 0.4), zo is the aero-

dynamic surface roughness height, and ψM is the stability correction for momentum

[61]. Equation 3.2 is differentiated to calculate the magnitude of the vertical deriva-

tives at lowest grid point. Vector decomposition is used to calculate the components

in horizontal directions. This equation is also used to write the surface stress as

τi3 = −
(

κ

ln(z/zo)

)2

ũiM, (3.3)

where M =
√
u2

1 + u2
2.

3.1.2 Lagrangian Particle Dispersion Code

A serial code was developed to simulate particle transport in the ABL. Three-

dimensional fields of the required variables were output to file for the chosen La-

grangian dispersion model at evenly spaced time increments. These were then used

to compute particle positions on a local machine using a single processor.
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The code solves a differential equation for the position of each particle at each

particle trajectory time step. If the particle time step is smaller than the time between

the outputting of LES fields, linear interpolation was used between two successive LES

files. Trilinear spatial interpolation was then used to calculate variable values within

grid cells.

Because of the horizontal periodicity of the domain, trajectories for particles which

travel beyond the horizontal boundaries of the domain can be calculated based on

periodicity. Particles that travel above the vertical boundary of the domain were

assumed to be lost and their positions were no longer calculated. This assumption

may introduce a small amount of error in the results due to the fact that particles

that rise above the domain height could potentially settle down and become deposited

in the canopy at large downstream distances. Thus, it was assumed that the domain

height is sufficiently large that an insignificant percentage of particles rise above the

domain height.

For particles that hit the bottom of the domain, it was assumed that there were two

possible outcomes: either the particle becomes indefinitely deposited on the ground

or the particle deflects off of the ground and continues traveling. To determine which

of these possibilities occurred, a stochastic model was used to predict the outcome.

The vertical velocity, w, was compared to the settling velocity of the particle, vs to

determine the probability of ground deposition as follows

PG = 2
vs

vs − w
; w < −vs, (3.4a)

PG = 1; |w| < vs. (3.4b)

where PG is the probability of deposition to the ground. To determine whether the

particle is deposited, a random number, Z, is chosen from a uniform distribution

between 0 and 1. If PG > Z, the particle is indefinitely deposited and its position is

no longer updated.

3.1.2.1 Rogue Trajectories

When using complex SFS velocity models, it is possible that the model can

calculate physically unreasonable or “rogue” trajectories. For example, consider eqn.
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2.13 when σ2
s ¿ 1. The SFS variance is expected to be small in highly resolved areas

of the flow, however, eqn. 2.13 predicts that the SFS velocity should be very large

(u′i → ∞) in these areas. Thus, some numerical limits must be imposed on particle

trajectories to avoid such rogue trajectories [78].

Equation 2.12 can be used to impose limits on the SFS velocity. If 〈es〉 and 〈er〉
are replaced with usi and uri, it can be said that

u′i <
fs

1− fs

ũi. (3.5)

If this condition is not satisfied, the SFS velocity was chosen to be equal to the random

forcing term in eqn. 2.11

u′i = (fsCoε)
1/2 dξi. (3.6)

3.2 Model Validation: Highly Convective ABL

In 1974, Willis and Deardorff [70] published the results of an experiment to repli-

cate particle dispersion in a convective planetary boundary layer. A Plexiglas tank

was constructed and filled with water, where the bottom of the tank was uniformly

heated to produce convection. The stability index −zi/L was approximately 100,

which would classify the boundary layer as highly convective. An instantaneous line

source of about 1150 neutrally buoyant oil droplets with an average diameter of 800

µm were released near the surface and allowed to travel through the tank. Particles

were released at a height of 7% of the average boundary layer height. Photographs

were taken in the Y-Z direction at various time intervals, which were processed to

give particle distributions in the span-wise and vertical directions. This experiment

proved to be very successful and has been highly referenced by researchers studying

the convective ABL [35, 31, 67].

To validate the Lagrangian particle dispersion models, simulation results were

compared against the experimental results of Willis and Deardorff. It was desired to

replicate the concentration profiles obtained from this experiment using the LES and

dispersion codes. The input parameters for the LES and dispersion simulations may

be found in Appendix A.1.
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Particle concentrations were sampled at discrete nondimensional times after re-

lease. The nondimensional time after release can be expressed as

X =
w∗
zi

t, (3.7)

where w∗ is a convective velocity scale, zi is the average boundary layer height, and

t is time after release. The concentration of particles projected onto a square of area

∆y ×∆z is

c =
n

Lx∆y∆z

, (3.8)

where n is the number of particles, Lx is the length of the domain in the stream-wise

direction, and ∆y and ∆z are the grid spacings in the span-wise and vertical directions.

The dimensionless concentration is defined as

C(X,Y, Z) = c(X, y, z)
z2

iU

S
, (3.9)

where U is the average stream-wise velocity, S is the number of particles emitted

per unit time, Y = y/zi, and Z = z/zi. The Y dependence of the dimensionless

concentration can be eliminated by integrating eqn. 3.9 with respect to Y to yield

the dimensionless cross-wind integrated concentration (CWIC)

C
y

=

∫ ∞

−∞
C(X, Y, Z) dY. (3.10)

Figure 3.2 shows model results of CWIC compared with the experimental results

of Willis and Deardorff. Results show that the simulation is able to adequately predict

particle concentration profiles for these stability conditions. All models were able to

capture the elevated concentration maximum present at X = 1.55. Also note that

the SFS velocity model used did not play a significant role in determining the shape

of CWIC profiles. The difficulty in this validation case proved to be matching the

conditions of the experiment and not the formulation an accurate SFS velocity model.

In much of the boundary layer, the fraction of SFS TKE to the total TKE (fs) is

relatively small, which is illustrated in Fig. 3.3. The SFS TKE fraction is relatively

constant in most of the boundary layer, with its value being approximately 20%.
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Thus the flow is fairly well resolved in these areas, and SFS particle velocity models

are less important. As a result, SFS velocity model choice is generally less important

in this flow than other more complex flows.

Near the surface, the SFS energy is much more important than in other areas of

the flow because of the lack of resolution. In Fig. 3.4, the CWIC is plotted near the

surface for various dimensionless times. The surface is defined as 0 < z < 0.067zi,

which was the height of the lowest grid square in the Willis and Deardorff experiment.

Even in the lowest grid square, the concentration showed little sensitivity to model

choice. Although this case provides adequate validation for the general Lagrangian

particle dispersion model, a more rigorous test of SFS velocity models is needed in

which the SFS energy is large over a significant portion of the domain.

Weil et al. performed a similar validation study in which he compared the results

of his SFS particle velocity model simulation (see eqn. 2.13) to the experimental

results of Willis and Deardorff. Simulation results indicated that neglecting the SFS

velocity tended to affect concentration results near the surface. This observation was

not seen in the results previously presented in this study. Weil et al. uses a simpler

eddy-viscosity model in their LES (see Moeng and Sullivan [38].) As a result, Weil

et al. reports near-surface SFS TKE fractions nearly twice as high values shown in

fig. 3.3. Thus, it is expected that SFS particle models will be more important near

the surface, given the lack of resolution in the LES of Weil et al.

3.3 Model Validation: Spore Transport
in a Wheat Canopy

A field experiment was performed by Aylor and Ferrandino [4] in which Ly-

copodium spores were released in a continuous wheat canopy. The canopy had a

cumulative LAI of 3.0, the average wind speed based on the seven measurement

locations was about 1.8 m/s, and the friction velocity, u∗ was 0.35. Particles with an

average diameter of about 30 µm were released at a height of 0.76 m in a 2.85 m tall

wheat field. Spore traps were set up at various heights at a position of 4 m downwind

of the release point. Wind speed was also measured at various heights using sensitive

cup anemometers.

Measurements of the cumulative leaf area index (LAI) and cumulative stem area
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index (SAI) are given for the wheat canopy. A third-order polynomial was fitted to

the experimental data and differentiated to yield a profile for the leaf area density

(LAD). As done by Aylor and Ferrandino, the SAI was assumed to vary linearly from

0 to 1 from z=0 to z=H, where H is the canopy height. When differentiated, this

gave a constant stem area density profile of dSAI/dz ≈ 1.05. The leaf and stem area

density profiles were superposed, which yielded the profile used in the LES canopy

model. This profile, as well as other important input parameters for the simulation

are shown in Appendix A.2.

Figure 3.5 shows horizontal velocity and fs profiles from LES of the wheat canopy.

Given the LAI and SAI field measurements, the LES is able to accurately replicate the

experimental velocity measurements of Aylor and Ferrandino. A drag coefficient of

0.75 was used to match the experimental velocity profile. Cd values are not reported

by Aylor and Ferrandino, however a value of 0.5 was reported by Patton et al [42]

for a simulated wheat canopy in a wind tunnel. For this case, the fraction of SFS

kinetic energy to total kinetic energy (fs) is much larger than in the convective ABL

case. Inside the canopy, fs is approximately 50% on average, with the largest values

occurring near the surface. Above the canopy, fs is slightly smaller yet still significant.

This means that SFS particle velocity models will be more important in this case

than the convective PBL case. Thus, this case is a more rigorous test of SFS particle

velocity models.

3.3.1 Estimation of Dispersion Statistics

Aylor and Ferrandino used particle traps to deposit Lycopodium spores on mi-

croscope slides. A known volume of air was sampled, and any spores present in the

volume of air were deposited on the slides. The number of deposited spores were

counted to determine particle concentration at various heights.

In order to compare with the experimental data presented by Aylor and Fer-

randino, a method must be formulated to calculate particle concentration and hori-

zontal flux from the numerical data. For a release of N particles, the concentration

of particles can be estimated by
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C(x, z) =
1

Ts

N∑

k=1

Tk

V
, (3.11)

where Ts is the total simulation time, and Tk is the time that the kth particle remains

in a volume V centered at the point (x, z).

The horizontal particle flux can be estimated by

Fx(x, z) =
Q

N · l (n
+ − n−), (3.12)

where Q is the line source strength (spores m−1s−1), n+ and n− are the number of

particles that cross a vertical line segment of length l in the positive and negative

directions.

These methods will also be used in following sections to estimate particle concen-

trations and fluxes.

3.3.2 Model Comparison

Dispersion simulations were performed to attempt to replicate the Aylor and Fer-

randino results for each available SFS velocity model. Particle release was performed

in a similar manner as was done in the field experiment. Particles were released

from six points along a 3.7 m line source. Concentration sampling volumes of size

∆x× 4∆y ×∆z were used to yield C(x, z). The concentration was normalized by the

release height, zos, the average velocity, U , and the source strength, S, and plotted

in Fig. 3.6.

Results show that models differ in their predictions more than was observed in the

convective validation case. The “no model, “variance model, and “anisotropic model”

predict similar particle concentration profiles. The isotropic assumption applied to

Weil’s formulation seemed to predict lower particle concentrations in the canopy. The

similarity in particle models even in the case where the flow is unresolved indicates

that possibly the stochastic forcing term in the Langevin equation dominates the

model, and possibly neglecting SFS contributions to the velocity may be reasonable.

However, the general anisotropic form of Weil’s model is used in the simulations pre-

sented in the following sections. Such a model choice may be considered unjustified,

other than the fact that the model may give marginally better results.
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Given the choice of the anisotropic form of Weil’s model, the performance of this

model will now be discussed. The validation study indicates a lack of mixing in the

canopy, according to the experimental results. Based on the limited data provided

by Aylor and Ferrandino, it is unclear whether this problem is a direct result of SFS

particle velocity choice or whether the lack of mixing comes from damped turbulence

in the LES results. Particle samplers in the field experiment were placed relatively

near the release point. As the concentration profile is examined further downstream

for simulation results, much higher mixing is observed. Hence, this indicates that

models do not perform as well near particle sources.



CHAPTER 4

DISPERSION IN A GRAPE VINEYARD

The focus of this research was to simulate the transport of powdery mildew spores

in grape vineyard canopies. This was accomplished using large-eddy simulation and

the previously presented anisotropic Langevin equation model for particle transport.

After validating these models with experimental data, these models were used as a

predictive tool to examine how canopy geometry in grape vineyards affects powdery

mildew dispersion.

4.1 Analysis of Dispersion in a
Single Vineyard Geometry

A simulation was performed to examine velocity and dispersion statistics for a

single vineyard geometry. The rows of the vineyard were oriented perpendicular to

the mean wind. A line source of particles parallel to the rows was used to release

particles at 75% of the canopy height. Particles are assumed to have a mean diameter

of approximately 30 µm. The drift velocity of powdery mildew spores, vs was assumed

to be similar to the drift velocity of Lycopodium spores, which was about 0.02 m/s.

In each simulation, 100,000 particles were released over a period of 5 minutes. It

was determined that 100,000 particles was sufficient to obtain converged statistics.

Figure 4.1 shows a general schematic of the simulated vineyard. The plants extend

continuously in the direction normal to the page, and the rows repeat infinitely in

the wind direction. The flow was driven by forcing the stream-wise velocity to have

a mean value of 2 m/s. Based on the geometry of common vineyards, the row width

was chosen to be 0.5 m, and the row height was chosen to be 2 m.

The majority of researchers who simulate row-oriented vegetation represent the

canopy as a continuous volume and do not resolve the row structure [4, 54]. In this

numerical experiment, the structure is sufficiently resolved to represent the spaces
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Figure 4.1. Particle release test case in a vineyard.
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between vegetative rows. The grid resolution in the stream-wise direction, ∆x, is

approximately 0.2 m, which provides several grid points per row width.

For this experiment, values for leaf area index and row spacing were chosen to

have values that might be observed in typical vineyards. The LAI was chosen to be

3.0 based on values reported by the Gladstone et al. 2003 data [20]. The LAI is

defined as the leaf area index of a single row (excludes spaces between rows.) The

shape of the leaf area density profile was chosen according to Gladstone’s data for

vertical shoot positioned trellis/training systems [20]. This shape was assumed to

remain constant for different values of LAI, thus the profile was scaled to achieve the

desired LAI. The row spacing was chosen to be 2.0 m based on values reported by

the Johnson et al. 2003 data [24]. The row spacing is defined as the period of the

rows (e.g., the center-to-center measurement of two adjacent rows.)

4.1.1 Velocity Statistics

Horizontally averaged statistics were calculated based on simulation data for the

stream-wise velocity, turbulent kinetic energy, and fs (see eqn. 2.12). Vertical profiles

of these variables are shown in Fig. 4.2, which were time-averaged over a statistically

steady period.

As expected, the classical s-shaped mean velocity profile is observed [54, 16]. A

jet forms in the trunk space of the canopy due to the decreased drag of the trunks,

which results in increased velocity in this region. The turbulent kinetic energy profile

indicates that the total TKE is relatively small in the lower half of the canopy

when compared with the rest of the domain. Although the total TKE is small,

the unresolved contribution to the TKE is large, with values of fs greater than 50%.

This indicates that models for the SFS velocity will likely be important inside the

canopy, as a significant portion of the scales of motion are unresolved. Even above

the canopy, fs is reasonable large, with values between 25% and 50%.

Since turbulence plays a large role in how particles disperse, it is useful to examine

turbulence statistics in greater detail. Examining the correlation between u and w

velocity fluctuations can provide valuable insight into canopy turbulence. Figure 4.3

shows velocity fluctuation vectors (~V = 〈u′, w′〉) in the x-z plane for a portion of the

vineyard. Vectors shown are spatially averaged in the span-wise direction and time
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Figure 4.3. Velocity fluctuation vectors (~V = 〈u′, w′〉) in the x-z plane. Mean flow
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averaged over a statistically steady period.

Results indicate that a periodic turbulence structure forms with a period equal to

the row spacing. If vectors with negative u′ and w′ components are defined as sweep

events, it can be observed that there is a high probability of sweep events in the area

immediately upwind of the trunk space. Furthermore, if vectors with positive u′ and

w′ components are defined as ejection events, it can be observed that there is a high

probability of ejection events at the top of the vegetation of the canopy. Notice that

the probability and magnitude of both sweep and ejection events begin to diminish

in areas away from the plant rows.

Had the canopy been represented as a continuous volume of vegetation instead of

resolving the row structure, this periodic sweep and ejection structure would not form

in the same manner. This has the potential to significantly impact particle dispersion

in the canopy, which will be examined more closely in later sections.

Another interesting feature of the row-oriented canopy is how the row structure

influences vertical particle transport. Figure 4.4 shows a contour plot of the vertical

velocity in the x-z plane for a portion of the vineyard. Vectors shown are spatially

averaged in the span-wise direction and time averaged over a statistically steady pe-

riod. Horizontally traveling particles which impact the upper third of row vegetation

tend to be transported up and possibly out of the canopy by the increased vertical

velocity at that location. Particles which impact the middle third of row vegetation

have relatively low vertical velocity and tend to be transported straight through

the vegetation. Particles that impact the lower third of row vegetation tend to be

transported down and into the trunk space of the canopy by the increased downward

velocity. This feature also suggests that resolving the row structure is important for

vertical particle transport.

4.1.2 Dispersion Statistics

To understand how particles released from a line source within a vineyard canopy

spread, particle dispersion statistics are first examined near the source. Figure 4.5

shows horizontal flux profiles for three downwind locations from the source. The

profiles demonstrate that the flux profile is still approximately Gaussian after particles

have crossed the first row. Further downstream, fluxes begin to decrease in areas of
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Figure 4.4. Mean vertical velocity magnitude (m/s) in the x-z plane. Mean flow is
from left to right.
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high vegetation density due to the filtering effect of deposition. Fluxes become largest

above the canopy where the velocity magnitude is largest and there is no vegetation

on which particles can become deposited. Figure 4.6 shows a contour plot of particle

concentration in the x-z plane for a portion of the vineyard. Concentrations are

spatially averaged in the span-wise direction. The filtering effect of the vegetation

can be clearly seen by the decreased particle concentrations in the wakes of vegetation.

4.1.3 Horizontally Continuous Representation
of the Vineyard

Previously, a hypothesis was made that resolving the row structures in numerical

simulations of grape vineyards is important in accurately predicting particle transport

in the canopy. That hypothesis was tested by simulating an equivalent continuous

canopy, where the LAI was decreased such that it had the same LAI as the discontin-

uous canopy with the spaces between rows taken into consideration. The “apparent”

LAI, LAI, of a continuous vineyard may be defined as

LAI = LAI

(−Vr

−Vt

)
= LAI

(
w

w + s

)
, (4.1)

where LAI is the leaf area index of the rows in the discontinuous canopy, −Vr is

the volume that the vegetation occupies in the discontinuous canopy, −Vt is the total

volume of the canopy including row spaces, w and s are row width and spacing,

respectively (see Fig. 4.1.)

A simulation was performed which represented the canopy as a continuous volume

of vegetation and had the same apparent LAI as the LAI=3.0 and spacing=2.0 case.

The flow in each simulation was driven with an equivalent pressure gradient in the

stream-wise direction. Furthermore, the same LAD profile was used in each case,

and was scaled to obtain the desired LAI. Figure 4.7 shows a comparison of the

horizontally averaged stream-wise velocity profile for both cases. Results indicate that

the mean streamwise velocity is insensitive to whether the canopy row structure is

explicitly resolved. The streamwise velocity in Fig. 4.7 was averaged over horizontal

planes and over a statistically stationary period, thus any inhomogeneous motions

from the discontinuous row structure have been removed by the averaging operation.

Thus, results indicate that mean horizontal wind statistics can be obtained without



42

Figure 4.6. Particle concentration (m−3) in the x-z plane. Mean flow is from left to
right.
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explicitly resolving canopy row structure for this specific geometry. However, as the

canopy becomes less dense, or apparent LAI is decreased, resolving the row structure

will likely become more important.

Any discrepancies between the continuous and discontinuous canopy representa-

tion will likely have an impact on particle dispersion. It is also likely that other

dynamics such as sweep and ejection events that are not seen in spatially and tem-

porally averaged statistics will cause differences in particle concentrations between

the two cases. Figure 4.8 shows concentration profiles at three downstream distances

from the release point for both types of canopy representation.

Results indicate that the continuous representation of the canopy overestimates

particle concentration in the canopy, and underestimates concentration above the

canopy. If a mean canopy concentration, C∗, is defined as

C∗ =
1

H

∫ H

0

C(z) dz, (4.2)

the downstream progression of concentration in the canopy can be compared for the

continuous and row-resolved canopies (Fig. 4.9). Although differences are small,

it appears that at distances greater than 4 m downstream of the release point, the

concentration is higher within the canopy for the continuous vineyard representation,

suggesting that there is less canopy escape.

This result may be further understood by examining the vertical particle flux

at the top of the canopy. This flux gives a quantitative measure of particle escape

from the canopy. The escape flux in the row-resolved case was 1.36× 10−6 m−2-t−1,

while the continuous case had a slightly smaller flux of 1.34 × 10−6 m−2-t−1. The

higher escape flux in the row-resolved case leads to higher concentration above the

canopy. Thus, representing the canopy as continuous not only results in increased

particle advection, but particles are also less likely to be ejected out of the canopy.

Furthermore, this result is also likely amplified in cases with smaller apparent LAI.

4.2 Comparison of Several Vineyard Geometries

The ability to limit the transport of powdery mildew spores from their source is

of primary importance in limiting disease outbreaks in grape vineyards. Presumably,
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vineyard canopy geometry has the potential to play an important role in the distance

at which spores travel from their source. This section examines the effect of plant

density and row spacing on the potential for disease spread. Near source concentration

distributions were examined, as well as the potential for long-range particle transport.

Numerical experiments were conducted for LAI values of 1.0 and 3.0. This was

determined to be a realistic range of values for actual grape vineyards, based on

values reported by the Gladstone et al. 2003 data [20]. For each chosen value of

LAI, a simulation was performed for row spacings of 1.0 m, 2.0 m, and 3.0 m, which

represented a realistic cross-section, based on values reported by the Johnson et al.’s

2003 data [24]. The LAD profile shape was set according to measurements by the

Gladstone et al. 2003 data [20] in which the LAD was measured at various heights

for a vertical shoot positioned trellis/training system. This profile was then scaled to

achieve the desired LAI. In each case, the flow was driven by an equivalent pressure

gradient in the stream-wise direction, which had a value of 0.025 Pa/m. In this

experiment, 100,000 particles were released over 5 minutes.

4.2.1 Velocity Statistics

Mean stream-wise velocity profiles are compared for six vineyard geometries in

Fig. 4.10. Results indicate that as LAI is increased, the velocity in the area affected

by the presence of the canopy tends to decrease as a result. This result makes sense

intuitively, as higher plant density creates increased drag which should dissipate more

momentum. A similar trend is observed as the row spacing is decreased. This is also

to be expected because as the row spacing is decreased, there is a larger fraction of

the domain occupied by vegetation. The apparent LAI is tabulated for each canopy

geometry in Table 4.1, which was previously defined by eqn. 4.1. The apparent LAI

is a measure of overall foliage density of the canopy. Thus, as the apparent LAI

increases, the velocity in the canopy tends to decrease due to increased overall plant

density. Figure 4.11 shows this trend of decreasing average stream-wise velocity in

the canopy as a function of apparent LAI. When scaled by the friction velocity, u∗,

the mean velocity decreases as an exponential function of apparent LAI (a plot of u∗

is shown in Fig. 4.12.) The scaling relationship between Uc/u∗ and LAI is
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Table 4.1. Apparent LAI assuming a continuous canopy for vineyard geometries.
LAI row spacing LAI

(m)
3.0 1.0 1.000
3.0 2.0 0.600
3.0 3.0 0.429
1.0 1.0 0.333
1.0 2.0 0.200
1.0 3.0 0.143

Uc/u∗ = α
(
LAI

)−β
. (4.3)

For this this group of simulations, α = 4.00 and β = 0.417. The coefficient of

determination, R2, for the fit was 99.7%. This trend shows asymptotic behavior as

the apparent LAI is increased. As the row spacing becomes smaller, the canopy begins

to converge to a continuous canopy. This suggests that for small row spacing, the

velocity becomes insensitive to changes in row spacing, and thus the sparse canopy

begins to act as a continuous canopy.

The effect of foliage density on the vertical velocity variance at the top of the

canopy was also examined, and is shown in Fig. 4.13. Results indicate that for a

given LAI, the variance tended to decrease as the row spacing was decreased. However,

when the variance is plotted as a function of apparent LAI, the trend seems to be

discontinuous as row LAI is changed between 1.0 and 3.0. Although the vertical

variance appears to follow a trend, values range from only about 0.33 to 0.36, which

indicates that the variance could be effectively considered constant with change in

apparent LAI. Stull [61] lists σ2
w/u∗ in the neutral surface layer as 2.5. The values

at the canopy top obtained from the numerical experiments are significantly lower

than those reported by Stull, as is expected considering the canopy top is not in the

surface layer and the canopy tends to damp fluctuations. However, many researchers

use correlations from the surface layer to approximate the variance near the canopy.

This approach will likely lead to a significant overestimation of the variance.

This discontinuous trend is also seen when the canopy displacement height is

examined. The canopy displacement height is the distance the logarithmic region is

effectively shifted up as a result of the canopy. It can also be interpreted as the mean



48

0.2 0.4 0.6 0.8 1

4

5

6

7

8

9

Apparent LAI

U
c / 

u *

Figure 4.11. Comparison of canopy averaged stream-wise velocity for six canopy

geometries. NOTE: Uc = 1
H

∫ H

0
U(z)dz



49

0.2 0.4 0.6 0.8 1
0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

Apparent LAI

u * (
m

/s
)

 

 
LAI = 1
LAI = 3

Figure 4.12. Comparison of the friction velocity, u∗ for six canopy geometries.

1=:= 1 



50

0.2 0.4 0.6 0.8 1
0.32

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

Apparent LAI

σ w
,to

p
2

 / 
u *2

 

 
LAI = 1
LAI = 3

Figure 4.13. Comparison of vertical velocity variance at the top of the canopy for
six canopy geometries.

1=:= 1 



51

amount of momentum absorption by the canopy [79]. With this interpretation, the

displacement height can be estimated by integrating the momentum flux profile

d ≈ h− 1

u∗

∫ h

0

〈u′w′〉 dz, (4.4)

where h is the canopy height, u∗ is the friction velocity at the canopy top, and 〈u′w′〉
is the horizontally averaged momentum flux. Figure 4.14 shows the displacement

height plotted as a function of apparent LAI. For fixed LAI, the displacement height

increases with increase in plant density. However, the displacement height is larger

for LAI=0.333 than LAI=0.429, which opposes the general trend.

Although the trend is slightly discontinuous, an exponential function can be fit

to the data to yield a correlation with reasonably high accuracy. The relationship

between apparent LAI and displacement height was found to be

d/H = 0.945
(
LAI

)0.0246
. (4.5)

The coefficient of determination, R2 for the fit was 98.2%, which indicates this

correlation could be used with relatively high confidence for the range of apparent LAI

presented in this numerical experiment, where error is likely dominated by modeling

errors.

This discontinuous trend in both the vertical velocity variance and displacement

height as functions of apparent LAI indicates that there are flow dynamics that are

influencing these statistics besides overall plant density. One variable that is likely to

play a significant role in this phenomenon is row spacing. The two cases at which the

discontinuity in the trend occurs have very similar apparent LAI, but have different

LAI and row spacing. It seems plausible that for similar apparent LAI, the case with

a much smaller row spacing should have larger vertical variance and absorption of

momentum. Smaller row spacing means that the flow will be impacting more rows,

which will consequentially transfer more momentum to the vertical direction and also

dissipate more momentum in the process.

Differences in turbulent structures between each vineyard case can dramatically

influence the behavior of the velocity field. Figures 4.15 and 4.16 show fluctuation

vectors (~V = 〈u′, w′〉) in the x−z plane for each vineyard geometry. Plant density and
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row spacing influence how coherent turbulence structures form in the spaces between

rows. When row spacing is equal to 1.0 m, large vortices are not allowed to form

because there is not enough space before the next row begins. Such motions tend to

be damped out by the high row frequency.

Turbulent fluctuation vectors can be useful in visualizing the discontinuous trend

observed in some of the previously presented statistics. Although the apparent LAI

of the LAI = 1.0/spacing = 3.0 m and LAI = 3.0/spacing = 1.0 m are very similar,

the turbulence structure is drastically different. In the case with the higher apparent

LAI, turbulent fluctuations generally have low magnitude with a small characteristic

length scale. Turbulent fluctuations are damped by the high row frequency. This

explains the lower vertical variance in the higher apparent LAI case. Furthermore,

the damping effect of high row frequency also seems to be one cause of the higher

than expected displacement height.

4.2.2 Dispersion Statistics

To examine the effect of canopy geometry on near-source particle distributions,

particle concentration was calculated at various downwind distances near the release

point. The concentration profiles are compared in Fig. 4.17 for the six previously

described vineyard geometries. Profiles are shown at three downstream distances.

Concentrations are again normalized by the volume averaged stream-wise velocity

to eliminate the dependence on stream-wise advection. If concentrations are not

normalized, it is observed that increased velocity due to lower plant density tends to

increase particle concentration. This is a somewhat trivial result and therefore results

are shown normalized by the stream-wise velocity.

Results show little difference in concentrations immediately after release, with con-

centration profiles appearing to be approximately Gaussian. As particles move further

downstream, concentrations generally tend to decrease in the canopy as apparent LAI

is increased. One influence on this result is the fact that more vegetation elements

result in a higher probability of deposition, thus reducing particle concentration.

Contrary to the previous statement, a similar discontinuous trend is observed

as was found with the vertical velocity variance. There seems to be a jump in

concentration as the row LAI is changed from 1.0 to 3.0. This is likely due to some
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Figure 4.15. LAI = 1: Velocity fluctuation vectors (~V = 〈u′, w′〉) in the x-z plane.
Mean flow is from left to right.
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Figure 4.16. LAI = 3: Velocity fluctuation vectors (~V = 〈u′, w′〉) in the x-z plane.
Mean flow is from left to right.
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influence of the vertical velocity variance in the canopy, as well as the change in

turbulence structure.

4.2.3 Potential for Long-Range Transport

Near source particle distributions are important in understanding the dynamics

of particle transport and how plumes develop as they travel from the source. But

ultimately the potential of rapid progression of epidemics is largely determined by

transport over large length scales. To examine how LAI and row spacing influence

the potential for long-range transport, a numerical experiment was performed in which

100,000 particles were released from a line source and tracked for 5 minutes. After

that time period, the absolute horizontal distance each particle had traveled from its

source was recorded.

The probability density function (PDF) is shown in Fig. 4.18 for a single vineyard

geometry. It is compared against a Gaussian distribution with the same mean and

standard deviation. One noticeable difference between the two distributions is that

the actual PDF is highly skewed. The Gaussian PDF is centered about its mean

value, and extends infinitely in each direction (only a portion shown.) For the actual

PDF, the most likely event is that a particle will be deposited in the first vegetation

row. The figure also shows that there is a much higher probability for extreme events

far away from the mean.

Table 4.2 shows a comparison of the mean and kurtosis of distance traveled from

release point for each vineyard geometry. These results are also shown graphically in

Fig. 4.19. Results show that increasing apparent LAI tended to decrease the average

distance that particles traveled from the source. If the mean distance traveled is

normalized by the average stream-wise velocity to form a “travel time,” (also shown

in Table 4.2,) particles generally tend to have the same travel time before becoming

deposited on average as apparent LAI is varied. This demonstrates that advection is

the dominating influence on the mean distance traveled by particles.

The kurtosis or flatness of distance traveled from source gives an indication of

the probability of extreme events. A high kurtosis indicates that there is a high

probability of particles traveling much further than the mean. From an epidemi-

ology perspective, this means that there is a high probability of extreme transport
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Table 4.2. Long-range transport statistics.
LAI 〈X〉 〈X〉/U 〈X4〉
1.000 59.11 40.05 15.63
0.600 59.99 39.84 16.62
0.429 60.63 38.41 15.15
0.333 60.97 38.02 13.12
0.200 72.89 40.19 13.59
0.143 80.24 40.83 12.42

events, thus increasing the likelihood of infection on a large scale. Kurtosis values

obtained from simulation results are not conclusive, but they indicate that, in general,

increasing apparent LAI tends to increase kurtosis or extreme events.

As noted previously, another important influence on long range particle transport

is canopy escape. Particles that escape the canopy are not directly influenced by the

drag and deposition of the canopy. As a result, particles that are able to escape the

canopy tend to travel further than particles that do not escape. Figure 4.20 shows

the vertical flux of particles at the canopy top. Results show a generally increasing

trend in canopy escape with increase in apparent LAI. Canopy escape also seems to be

correlated with the kurtosis of distance traveled by particles. It seems reasonable that

geometries with high canopy escape should yield high kurtosis in distance traveled

from the source by particles.

4.2.3.1 Canopy Escape Neglecting Plant Deposition

The previous study of long-range particle transport revealed that increasing overall

or “apparent” plant density in the vineyard tended to limit the probability of trans-

port over large length scales. A significant influence on this behavior is deposition.

More vegetation results in a higher probability of deposition, thus limiting transport.

It is difficult to determine exactly what role deposition plays in the results and if

there are other dynamics of the flow that also influence long-range transport. In an

attempt to isolate the dynamics of the flow, a numerical experiment was performed

to examine long-range transport as previously described, however plant deposition

was ignored. Note that, although relatively insignificant, ground deposition was still

included.
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Figure 4.21 shows the probability density function for a single simulation without

deposition is compared against the same case with deposition and the Gaussian PDF.

The PDF seems to follow the same trend as the Gaussian PDF. When compared to

the case where deposition was included, deposition seems to cause a sharper drop in

probability with larger distance traveled. There is larger area in the tails of the PDF

when deposition is not considered, indicating that a larger amount of particles travel

very long distances.

When the mean distance traveled by particles at the end of the simulation is

examined, a similar trend is observed as when deposition was present (see Table

4.3 and Fig. 4.22.) As overall plant density is increased, particles seem to travel a

shorter distance before the end of the simulation. Furthermore, the “travel times” for

particles were also relatively constant, which is expected as particles generally travel

for the same amount of time, as there is no plant deposition.

Although there is larger area in the tail of the PDF when deposition is not

considered, the kurtosis is much smaller. This is due to the fact that the mean is

much larger in the simulation with no deposition. The kurtosis is relatively constant

when overall plant density is varied and has a value of about 3 m4.

Table 4.3. Long-range transport statistics (no deposition.)
LAI 〈X〉 〈X〉/U 〈X4〉
1.000 231.20 153.24 3.37
0.600 244.58 159.10 3.27
0.429 251.29 155.52 3.16
0.333 265.56 160.90 2.89
0.200 303.84 162.37 2.91
0.143 322.77 159.06 2.90
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CHAPTER 5

CONCLUSIONS

A series of large-eddy simulations were performed to analyze the dispersion of

powdery mildew in grape vineyard canopies. A Lagrangian particle dispersion model

was implemented that utilized Weil et al.’s adaptation of the Langevin equation to

calculate the unresolved velocity component. A stochastic deposition model based

on impaction of aerosols on circular cylinders was used to predict the probability of

particle deposition on canopy foliage.

The models were validated against two experimental data sets: dispersion in a

highly convective boundary layer [70] and dispersion in a continuous wheat canopy

[4]. Models performed well when used to simulate the highly convective boundary

layer case, which was largely due to the fact that the boundary layer was well resolved

in the LES (i.e., fs ≈ 20%.) The wheat canopy dispersion case was a more thorough

model test, with fs values ranging from about 50% to 75% in the canopy. The

Lagrangian dispersion models explored in this thesis demonstrated insufficient mixing

in the canopy. This could be due to insufficient turbulence levels in the LES solution

or poor performance of the SFS particle velocity model. A conclusion cannot be made

on the precise source of the lack of mixing based on the limited data set reported by

Aylor and Ferrandino. However, as simulation results were examined further from

the source (experimental values are reported at X = 4 m from the source) the models

showed better mixing in the canopy.

In each simulation, 100,000 particles were released from a line source at 75% of the

canopy height. The particles were allowed to travel until they were either deposited

or the sampling time of 5 minutes was exceeded. The canopy was sufficiently resolved

to model the discontinuous nature of the vineyard canopy. First, dispersion in a

single vineyard geometry with a leaf area index of 3.0 and row spacing of 2.0 m was

simulated to study the velocity field and dispersion characteristics of this type of flow.
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Simulation results showed that, on average, the unresolved portion of the turbulent

kinetic energy is greater than 50% in the canopy, thus emphasizing the importance of

an adequate SFS velocity model for this type of flow. Furthermore, the discontinuous

nature of the canopy seems to enhance vertical transport as the flow impacts each

row.

To test the hypothesis that resolving the discontinuous canopy structure is impor-

tant in obtaining accurate velocity and dispersion statistics, an “equivalent” continu-

ous canopy was simulated that had the same apparent leaf area index as the previous

vineyard case. The continuous representation of the canopy was able to predict the

same mean velocity profile as the row-resolved representation. Results also showed

that the continuous representation tended to yield slightly less particle escape from

the canopy.

To examine the effect of canopy geometry on various velocity field and dispersion

statistics, a series of six simulations were performed with leaf area index ranging

from 1.0 to 3.0 and row spacing ranging from 1.0 m to 3.0 m. Results showed that

as the overall density of the canopy was increased, the average velocity in the canopy

decreased according to an exponential function. Other higher order velocity statistics

did not follow a smooth trend with change in overall canopy density, and behaved

according to a more complex function of LAI and row spacing. This result led to

the investigation of turbulence structure in the canopy. The formation of coherent

structures in the spaces between rows seemed to be dominated by row spacing,

although plant density did play a role.

Simulations were also performed to examine how canopy geometry affected particle

transport over large length scales. Results showed that particles tended to travel

further, on average, when overall canopy density was decreased. This was shown to

be dominated by mean stream-wise advection. Decreasing overall canopy density also

tended to decrease the probability of particles traveling much further than the mean.

This decrease seemed to correspond with the decrease in canopy escape.

Nearly all statistics tended to converge to an asymptotic value as overall canopy

density became large. Thus, as canopy density becomes sufficiently large, the canopy

begins to act as a continuous, dense canopy. At this point, it seems acceptable
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to represent the canopy as continuous and not resolve row structure. However, for

realistic values of vineyards that are normally observed, this approximation will likely

introduce significant inaccuracies in results.

5.1 Future Work

5.1.1 Domain Size and the Top Boundary Condition

For the preceding results, the assumption was made that the chosen domain

height was large enough to allow all important coherent turbulence structures to form.

Furthermore, it was also assumed that there was no stress at the top of the boundary,

implicitly implying that the domain height is at or above the boundary layer height.

The overwhelming majority of researchers choose a domain height near three canopy

heights (e.g., [4, 54, 79, 17]), with little or no discussion of the implications of such

a choice. Truncating the domain height could neglect the effects of large eddies that

may be important to long-distance transport. Furthermore, assuming zero stress at

the top of the domain could dramatically alter the velocity field in and above the

canopy.

A simulation was run that was identical to the LAI = 3.0/row spacing = 2.0 m

case, however the dimensions of the domain were increased to 2Lx×Ly×2Lz. Figure

5.1 shows a comparison of the velocity profiles for the “small” and “large” domain

sizes. This figure shows that assuming zero stress at the top of the domain when the

domain height is below the boundary layer height effectively decreases the velocity

above the canopy. It appears that the velocity in the bottom half of the canopy is

relatively unaffected by the domain size. This result is likely dominated by the top

boundary condition. If the domain height is below the top of the boundary layer, in

general there will be some stress at the top boundary, and as a result the velocity

profile will not flatten out to zero slope.

Figure 5.2 shows concentration profiles for both domain size choices. Results show

that increasing the domain size tends to increase particle concentrations inside the

canopy. The differences become larger as particles move further downstream from

the source.

The obvious solution to this problem is to increase the domain height to the top

of the boundary layer. To keep the same resolution in the canopy, this would result
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in and extremely large number of computational nodes, as the horizontal domain size

must also be increased to obtain an acceptable grid aspect ratio. One possible method

to improve results without increasing domain height would be to use the log-law to

estimate the stress at the top of the boundary. If the displacement height is known, a

logarithmic profile can be used to estimate the slope at the top boundary. However, a

similar problem arises as when the bottom boundary condition is specified. Although

on average the stress is zero in the span-wise direction, the stress may not be zero

instantaneously. As a result the stress in the span-wise direction is specified by vector

decomposition of the log-law. This would likely produce similar errors as are present

at the bottom boundary, but may significantly improve results overall.

Another solution is to use a domain height above the boundary layer height and

use a refined grid in the area near the canopy. This would allow for the desired

resolution in the canopy and coarser resolution above the canopy, while still keeping

the same number of computational nodes. This would also require grid refinement in

the horizontal directions in order to preserve the grid aspect ratio. Grid refinement

in the horizontal directions can be problematic when using pseudospectral methods.

5.1.2 Further Validation

Although the previously presented models have been validated for a continuous

canopy, a comparison to empirical data for a sparse canopy, specifically a vineyard,

has yet to be performed. To further validate the models, numerical results will be

compared to field data for an experimental vineyard. Some field experiments have

been performed that produced questionable data. It is not clear at this time how

reliable the results from previous experiments are. However, a second iteration of

the field experiment is planned. Future data along with past data should provide a

reliable data set with which the numerical models may be compared.

If future experimental results indicate that current dispersion models may be

inadequate, specifically in sparse canopy geometries, work may be done to formulate

models which are general enough to be applied to such heterogeneous and anisotropic

flows such as the vineyard.



APPENDIX

SIMULATION INPUTS

A.1 Willis and Deardorff Validation Case

Table A.1. LES inputs for the Willis and Deardorff validation case.
Nx × Ny × Nz is the number of grid points, Lx × Ly × Lz is the domain size, wθo

is the surface heat flux, zo is the surface aerodynamic roughness height, U − g is
the geostrophic wind, Θ0 is a buoyancy reference temperature, and fc is the Coriolis
parameter.

Nx ×Ny ×Nz Lx × Ly × Lz wθo zi,o zo Ug Θ0 fc

(km) (m-K/s) (m) (m) (m/s) (K)
963 5× 5× 2 0.24 850 0.16 3.6 294 1.5

Table A.2. Particle model inputs for the Willis and Deardorff case.
N is number of particles, ∆tp is the timestep for updating particle positions, zr is the
release height, and C0 is a SFS model parameter.

N ∆tp zr C0

(s) (m)
72,900 1.0 70 3.0

A.2 Aylor and Ferrandino Validation Case

Table A.3. LES inputs for the Aylor and Ferrandino validation case.
Nx ×Ny ×Nz is the number of grid points, Lx × Ly × Lz is the domain size, ∂p/∂x
is the forcing pressure gradient, zo is the surface aerodynamic roughness height, and
H is the canopy height.

Nx ×Ny ×Nz Lx × Ly × Lz U zo H
(m) (m/s) (m) (m)

96× 96× 60 17.9× 17.9× 2.85 1.84 0.01 0.95
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Table A.4. Particle model inputs for the Aylor and Ferrandino validation case.
N is number of particles, ∆tp is the timestep for updating particle positions, zr is the
release height, C0 is a SFS model parameter, Lv is the characteristic size of vegetation
elements, fx and fz are the fractions of plant area projected onto horizontal and
vertical planes, vs is the particle settling velocity.

N ∆tp zr C0 Lv fx fz vs

(s) (m) (m) (m)
30,000 0.059 0.76 3.0 0.004 0.5 0.1 0.0194

A.3 Vineyard Cases

Table A.5. LES inputs for the vineyard case.
Nx ×Ny ×Nz is the number of grid points, Lx × Ly × Lz is the domain size, ∂p/∂x
is the forcing pressure gradient, zo is the surface aerodynamic roughness height, H is
the canopy height, and w is row width.

Nx ×Ny ×Nz Lx × Ly × Lz ∂p/∂x zo H w
(m) (Pa/m) (m) (m) (m)

96× 96× 60 17.5× 17.5× 2.0 0.025 0.01 2.0 0.5

Table A.6. Particle model inputs for the vineyard case.
N is number of particles, ∆tp is the timestep for updating particle positions, zr is the
release height, C0 is a SFS model parameter, Lv is the characteristic size of vegetation
elements, fx and fz are the fractions of plant area projected onto horizontal and
vertical planes, vs is the particle settling velocity.

N ∆tp zr C0 Lv fx fz vs

(s) (m) (m) (m)
100,000 0.06 1.75 3.0 0.005 0.5 0.5 0.02
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Figure A.1. Leaf Area Index and Leaf Area Profiles for the Aylor and Ferrandino
validation case.
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Figure A.2. Leaf Area Index and Leaf Area Profiles for the vineyard cases.
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