
A Framework for Specifying and Monitoring User Tasks

Tony Y. Chang
University of Illinois

Urbana, IL 61801
tonychang@acm.org

Neil A. Chilson
University of Illinois

Urbana, IL 61801
chilson@uiuc.edu

Brian P. Bailey
University of Illinois

Urbana, IL 61801
bpbailey@uiuc.edu

ABSTRACT

Knowledge about user task execution can help systems better
reason about when to interrupt users. To enable recognition
and forecasting of task execution, we develop a novel frame-
work for specifying and monitoring user task sequences. For
task specification, our framework provides an XML-based
language with tags inspired by regular expressions. For task
monitoring, our framework provides an event handler that
manages events from any instrumented application and a
monitor that observes a user’s transitions within and among
specified tasks. The monitor supports multiple active tasks
and multiple instances of the same task. The use of our
framework will enable systems to consider a user’s position
within a task model when reasoning about when to interrupt.

Keywords

Attention, Interruption, Task Models, Monitoring Tasks

INTRODUCTION

When proactive applications interrupt users at a less oppor-
tune moment in their task sequence, it disrupts their task per-
formance [4], error rate [20], decision making [23], and af-
fective state [1] much more than if they had interrupted at a
more opportune moment. Prior work has demonstrated that
task boundaries represent more opportune moments for inter-
ruption that non-boundary moments [1], because users expe-
rience less mental workload at those moments [14]. To en-
able proactive applications to defer information until bound-
ary moments, there needs to be an intelligent mechanism for
specifying users’ tasks and later monitoring those tasks.

Because existing systems that reason about when to interrupt
users rely solely on external and non-task specific interaction
cues [12, 13], they could make better decisions with a more
precise model of a user’s task.

While there has been research on task description languages
for generating interfaces and evaluating usability [7, 15, 25],

[Leave blank the last 2.5 cm (1 inch) of the left-hand column
on the first page for the copyright notice.]

and research on task monitoring for cooperative agents
[22, 9], our work provides a unified framework for both spec-
ifying and monitoring users tasks.

Our framework consists of a task description language for
specifying tasks and patterns of events at multiple levels of
detail, an event handler that manages user events from in-
strumented applications, a graphical tool to lower the speci-
fication effort, and a task monitor that follows a user’s transi-
tions within and between tasks. Rather than infer task mod-
els from user events [19], we provide effective end user tools
for specifying tasks with low investment. The task monitor
records time spent on each task step, learns transition fre-
quencies among tasks, and stores this information in a model
of task execution. The task monitor can notify user-level ser-
vices when a user begins or finishes a task or subtask and can
provide predictions of future task sequences.

In this paper, we describe our task description language and
monitoring system. We provide examples illustrating their
use and operation. Results are also presented from a user
study that shows how our language can be used to specify
practical tasks and how our monitoring system can effec-
tively follow a user’s progress. Although discussed, learning
transition probabilities and providing an appropriate notifica-
tion API for boundaries is still work in progress. Our frame-
work could be used to instrument the desktop environment
as well as correspondence domains for intelligent attention
management.

RELATED WORK

We describe how our framework differs from existing script-
ing languages and frameworks and how its task description
language and monitoring system each differ from prior work.

Scripting Languages and Frameworks

A language for scripting user interaction can be used to
record macros for automating tasks. A macro thus provides
an executable description of a task. Our task description
language enablespatternsof events to be specified and en-
ables other systems tomonitoruser tasks, rather than execute
them.

A system-wide scripting framework such as AppleScript [3]
enables applications to subscribe to events and access data
published by other applications. While these frameworks

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


enable notification when specific application events occur,
our framework enables notification when a user performs
and transitions among specified tasks, and can forecast a
user’s task behavior based on prior observations. Because
our framework uses a client/server architecture, it can also
interact with applications and services across hetergenous
systems.

Task Description Languages

Task description languages have been developed for task
analysis [16], to generate interfaces [24], and to predict the
usability of interfaces [7, 15, 25]. While these languages can
describe different characteristics of user tasks, our task de-
scription language enables specification of the hieracrchial
decomposition of a task and the pattern of application-level
events generated when that task is performed. Our language
is also machine parsable and human readable.

Collagen uses task models to link GUI design and agent be-
havior [22] and the language enables hierarchical decompo-
sition. In contrast, our language uses nesting of XML tags to
more naturally express hierarchial decomposition, offers an
application-independent language to describe tasks, and uses
a syntax and semantics inspired by regular expressions.

ActionStreams [19] is a system that inductively learns hierar-
chical tasks from the user event stream. The task models can
then be used to predict user tasks or inform interface design.
While our framework shares similar goals, our approach is to
provide an effective set of tools for directly specifying user
tasks. This should enable more correct and predictable task
specifications, and does not require executing each task mul-
tiple times for the underlying system to learn the model.

Intelligent Classroom [9] describes a reactive agent that
monitors an instructor’s tasks and cooperates by managing
media and adjusting camera viewpoints in the classroom.
While it shares a similar architecture, our framework pro-
vides an effective tool set that enables users to specify their
own tasks, targets users interacting with desktop applica-
tions, and provides an open architecture to enable user-level
services to leverage its task monitoring system.

Task Monitoring

Many systems [22, 19, 9] monitor the user event stream and
compare events to a task model. In each case, researchers
defined their own system to address this common need. Our
work provides a general framework for specifying and mon-
itoring user tasks. Task specific services can be built on top
of our framework, saving duplication of effort.

Bayesian networks have been applied to infer a probability
distribution over user tasks [2, 10]. The networks typically
use specific events or properties of events as evidence vari-
ables in the network. This mechanism works well for identi-
fying a task in the midst of sparse or noisy data. In contrast,
our monitoring system can monitor multiple ongoing tasks
and multiple instances of the same task. Our system also

stores how much time a user spends on a task and learns tran-
sition probabilities among specified tasks, which Bayesian
networks by themselves can not support.

Attentive interfaces seek to monitor a user’s changing infor-
mation needs and offer relevant information [18]. An atten-
tive user interface may benefit from having a more precise
understanding of a user’s task, which our framework enables,
and could leverage our task monitor to better anticipate mo-
ments in a user’s task where peripheral information could be
presented with less disruption.

A challenge in task recognition is how to handle situations
where multiple tasks match the same initial sequence of
events. In this case, our task monitor creates a candidate
set of possible tasks and refines the set as more events are
generated. While our approach provides a working solu-
tion, more sophisticated, probabilistic approaches such as
Dempster-Shafer theory [6] could be used in the future. User
preferences for execution sequences and more domain spe-
cific information could also help resolve ambiguity in task
recognition.

In sum, our work is unique because it utilizes regular ex-
pressions and XML nesting to specify user tasks and event
patterns using a pithy notation, it can monitor multiple ongo-
ing tasks and forecast task behavior, and it provides an open
framework for specifying and monitoring users tasks.

SYSTEM DESIGN GOALS

To guide the development of our system as well as similar
systems, we defined design goals for both the task specifi-
cation language and monitoring system. The termauthor
refers to the person writing a task specification, which could
be an interface designer, an end user, or other person. Our
design goals for the system were to:

• Enable low-investment specification of user tasks. The
benefit that comes from specifying tasks must outweigh
the investment required to specify those tasks. While we
have shown the potential benefit of task monitoring for at-
tention management [1], realizing a net benefit requires
that a task specification language be easy to use and learn,
and be accompanied by effective interface tools that fur-
ther ease the specification effort.

• Enable tasks to be specified at multiple levels of detail. For
example, a ‘compose email’ task could be decomposed
into ‘open window’, ‘compose’ and ‘send mail’ subtasks.
The ‘compose’ subtask could then be further decomposed
into ‘select recipients’, ‘enter subject’, and ‘enter body’
subtasks, and so forth. For an attention manager, for ex-
ample, finer task decomposition would enable finer tem-
poral reasoning about when to interrupt [1], but also re-
quires more effort of the author. Striking the appropri-
ate balance between level of detail and specification effort
should be left to the author’s discretion, not imposed by
the system.

2



• Enable expressive specification of tasks. An effective lan-
guage should enable an author to express variations of
task execution in a pithy notation. Although there may
be different ways to accomplish a task, an author should
not have toexplicitly describe all those variations. This
is analogous to how regular expressions provide a nota-
tion that enables a single specification to describe several
matching patterns of strings.

• Enable specification of tasks that cross applications. User
tasks often span applications. An example is that a user
receives an email with an attached document, opens the
document, edits it, and emails it back to the sender. If per-
formed often, an author may want to specify this sequence
as a single task even though it crosses applications.

• Accurately monitor specified tasks in the midst of unspec-
ified tasks. A task monitoring system cannot expect all
user tasks to be specified due to the enormous space of
tasks that a user can perform. Research shows, however,
that users often spend about 81% of their time performing
a few core tasks in a few applications [8]. Thus, even if a
system monitors only a small part of the task space, it is
still possible for it to recognize tasks performed most of
the time.

• Support forecasting of a user’s task behavior. By main-
taining a historical model of how a user performs and
transitions among specified tasks, a system can forecast a
user’s task behavior. The temporal granularity of the fore-
casting would be commensurate with the level of detail in
the task specifications. For example, for a compose email
task specified at a coarse level, a system could forecast that
a user will spend about 5 minutes composing an email, or
if specified at a finer level of detail, that the user will spend
1 minute selecting recipients, 30 seconds writing the sub-
ject, and 3.5 minutes composing the body. Forecasting
tasks would be useful, for example, to enable an attention
manager to better reason about when to interrupt a user.

FRAMEWORK ARCHITECTURE

As shown in Figure 1, our framework consists of four com-
ponents; (i) atask description languagecalled PETDL that
enables an author to express tasks and patterns of events at
multiple levels of detail, (ii) anevent handlerthat manages
user events, (iii) agraphical toolcalled PETDL Maker that
can be used to quickly assemble task specifications, and (iv)
a task monitorthat follows a user’s progress through a spec-
ified task, recording transition frequencies and time spent at
each step in a task model.

The framework uses a client/server architecture where the
event handler and task monitor can execute on separate ma-
chines. This minimizes the performance footprint on client
machines, and enables the task monitor to monitor tasks of
multiple users.

Event handler Task monitor

...

Author
create task

specification

store

forward
Filter and

match

Model of task
behavior

Notify and
predict

Camera
MS Word

plugin

MS Outlook

plugin

Applications

Record time,
frequencies

Attention
manager

Task help
Proactive
retrieval

User services

Event
database

PETDL task
specifications

PETDL
Maker

Language
constructs

User

Task
specification

BenefitsInteracts

Events

uses

Firefox

plugin

Client

Server

Figure 1: The architecture of our framework.

PETDL Tag Description
task Expresses task structure and enables reuse
inOrder Children tags must occur in specified order
anyOrder Children tags can occur in any order
optional Zero or one of specified children may occur
oneOrMore One or more of specified children may occur
zeroOrMore Zero or more of specified children may occur
repeatExactly Children must occur an exact number of times
choice Exactly one of the children may occur
event An application-level event

Table 1: PETDL Tags.

In our framework, the termeventrefers to an application-
level event, which is a system-level event that has been deliv-
ered to and interpreted by an interface control. For example,
a system-level event is ‘mouse click’ while an application-
level event is ‘save file.’ We developed plugins for Out-
look and Firefox to demonstrate the feasibility of and test
our framework.

Task Description Language

PETDL (Pattern-based Event and Task Description
Language) is an XML-based language for describing user
tasks that draws upon GOMS [7], regular expressions, and
schema descriptions. Table 1 shows all the tags available
in the language and Figure 2 shows how a calendaring
task in Microsoft Outlook can be specified using the tags.
Any number of task specifications can be contained in one

3



<task name="Manage Schedule">
<task name="Schedule Appointment From Email">

<inOrder>
<event name="OpenMailItem"/>
<optional>

<event name="SwitchFocus"/>
</optional>
<anyOrder>

<task name="AddAppointment">
<inOrder>

<event name="OpenApptItem"/>
<oneOrMore>

<event name="ChangeApptItemProp"/>
</oneOrMore>
<event name="WriteApptItem"/>
<event name="CloseApptItem"/>

</inOrder>
</task>
<event name="CloseMailItem"/>

</anyOrder>
</inOrder>

</task>
</task>

Figure 2: Sample PETDL specification.

PETDL document. PETDL includes tags to describe events,
hierarchy, references, and pattern matching as outlined
below:

• Events. An author uses the<event> tag to name an event
in a specification. When an application connects to our
event handler service, it sends a dictionary of events and
their descriptions and stores this information in the event
database. Although not shown in Figure 2 for brevity,
events may include attributes that specify the name of the
application or instance of an application. By including the
application name with the event, task specifications can
cross application boundaries. The name of the event must
exactly match the name of the event forwarded by the ap-
plication.

• Hierarchy. Similar to GOMS [7], PETDL provides a lan-
guage that an author can use to hierarchically decompose
a task into component subtasks (goals) and patterns of
events (operators). PETDL provides a single tag<task>
that can be recursively nested to express subtask hier-
archies and to enable subtasks to be reused elsewhere
through the use of references. For example, in 2, ‘Add Ap-
pointment’ is a subtask of ‘Schedule Appointment From
Email.’ The use of nesting makes it easier to further de-
compose existing tasks. In a<task> tag, any number of
control tags can be used to express patterns of matching
user events in the task. The names of the control tags re-
flect the event patterns they express. The ability to nest
task and control tags meets our goal of expressing tasks at
multiple levels of detail.

• References. A positive consequence of using a nestable
tag to express hierarchy is the ability to reuse any subtask
in the same or other tasks. This lowers the investment to

create and mantain task specifications by reducing dupli-
cation of common subtasks and by shortening the PETDL
description. PETDL allows a reference to be made to al-
ready specified subtasks through the use of aref=true
attribute of a task tag. For example, in Figure 3, the ‘Ad-
dAppointment’ task from the beginning of the task is ref-
erenced and reused later in the task, and could also be used
in separate tasks.

<task name="Manage Schedule">
<task name="AddAppointment">

<inOrder>
...

</inOrder>
</task>
<task name="Schedule Appointment From Email">

<inOrder>
...
<anyOrder>

<task name="AddAppointment" ref="true"/>
<event name="CloseMailItem"/>

</anyOrder>
</inOrder>

</task>
</task>

Figure 3: A PETDL specification using a task reference.

• Pattern Matching. Listed in Table 1, PETDL pro-
vides seven control tags for specifying sequential pat-
terns of user events. Control tags are similar to the con-
trol syntax used in regular expressions, e.g., the use of
<zeroOrMore> in PETDL is equivalent to the use of
‘*’ in regular expressions. Similar to describing match-
ing patterns of strings, an author uses the control tags in
a task specification to express matching sequences of user
events. Going beyond regular expressions, however, our
language also includes an<anyOrder> tag. The use of
this tag in Figure 2, for example, states that a user may
either add the appointment then close the email, or close
the email and then add the appointment. The control tags
provide a concise and expressive notation for expressing
patterns of user events.

Event Handler

The event handler executes in the server process and ac-
cepts user events from client applications. For each event,
the name of the event, the application that generated it, and
the time that it was generated are sent to the handler. The
event handler stores this information in an event database to
enable a user to inspect and quickly assemble task specifica-
tions through the PETDL Maker tool. Once stored, the event
handler forwards an event on the the task monitor.

PETDL Maker

PETDL Maker is a graphical tool that enables an author to
more easily inspect event dictionaries, inspect event histo-
ries, and further ease the task specification effort. It uses a

4



Figure 4: PETDL Maker tool.

drag-and-drop interface that allows users to quickly assem-
ble task specifications by dragging elements from the event
dictionary, PETDL tags, and a list of incoming, realtime
events from an application. Because the list of events can be
large, the tool enables users to filter events using application
name and time. To create a specification, an author drags-
and-drops elements to the document region, where they are
inserted into a tree-structure that enforces and reflects the hi-
erarchical nature of the PETDL language. Because the tool
connects to the event database, a user can perform a task,
and incorporate the resulting event stream for that task into
their PETDL specification. We believe that this macro-style
of authoring PETDL documents may dramatically reduce the
effort to specify tasks.

Task Monitor

The task monitor can notify user-level services when a user
starts or finishes a task or subtask and provide predictions of
future task behavior based on historical observations. The
task monitor follows a user’s progress through PETDL task
specifications. It receives events from the event handler and
matches the incoming events to the tasks’ specifications. The
task monitor creates position placeholders for each task that
the user is currently in. This allows the user to be in the midst
of multiple tasks or the same task multiple times.

When the task monitor receives an event, it is first compared
against existing position placeholders to see if it matches the
next event in an existing task. If it does not match, it is com-
pared to events that start a new task. If it still does not match,
the event is ignored by the task monitor. For example, the
event stream in Figure 5 would be matched against the ‘Man-
age Schedule’ task of Figure 2 as follows:

1. This first event,AppActivate , is ignored by the task
monitor because it does not match the first event in the task
description,OpenMailItem . The task monitor contin-
ues to ignore events until it seesOpenMailItem .

1. <event name="AppActivate"
timeOccurred="2004.07.04 18:36:09" />

2. <event name="OpenMailItem"
timeOccurred="2004.07.04 18:36:30" />

3. <event name="ReadMailItem"
timeOccurred="2004.07.04 18:36:30" />

4. <event name="OpenApptItem"
timeOccurred="2004.07.04 18:37:53" />

5. <event name="ChangeApptItemProp"
timeOccurred="2004.07.04 18:38:59" />

6. <event name="ChangeApptItemProp"
timeOccurred="2004.07.04 18:38:59" />

Figure 5: Example event stream with events numbered for
reference.

2. The second event,OpenMailItem , matches the first
event of the “Schedule Appointment From Email” task.
Since this is the first event in the task, the task mon-
itor creates a position placeholder to track progress
through the task. The next matching event can be
SwitchFocus , which is optional, orOpenApptItem
or CloseMailItem , which can occur in any order but
both must occur.

3. The third event,ReadMailItem , does not match the ex-
isting position in the task nor does it start a new task. Since
it does not match, it is ignored by the task monitor.

4. The fourth event,OpenApptItem , gets matched with
the position placeholder and now the position placeholder
is waiting forChangeApptItemProp .

5. The fifth event, ChangeApptItemProp , matches
the position placeholder and it is updated and now
expecting another ChangeApptItemProp or
WriteApptItem .

6. The last event,ChangeApptItemProp , also matches
the position placeholder because of theoneOrMore
control tag. The position placeholder will still match
more ChangeApptItemProp events or aWrite-
ApptItem event.

Because it ignores non-matching events and maintains the
position placeholders, the task monitor can monitor tasks in
the midst of non-matching events and unspecified tasks. For
example, in the ‘Manage Schedule’ task, the user could save
the email at any time - thus generating a non-matching event
- without disrupting the task monitor.

Our algorithm compares new events against the events that
could possibly occur next. In cases where an event can match
multiple subsequent events, an ambiguity arises. We han-
dle this through one of many possible solutions, namely by
matching the event to the placeholder that was created first
chronologically. If a placeholder has not moved for a long
time, then the placeholder is discarded.

As a user transitions among specified tasks, the task moni-
tor builds a model of a user’s task execution behavior. The

5



model is a graph where the nodes represent tasks and edges
represent transitions among them. Edges are added as the
user transitions between tasks for the first time. Transitions
result in the recording of frequency information, i.e. how
often the user transitioned to this task versus other possible
tasks. From the model, the task monitor can infer the time
and the transition to the next task and further task sequences.

IMPLEMENTATION

The task monitor and the event handler were written in
Python and together consist of several thousand lines of
code. Python’s xml.dom library was used to validate PETDL
specifications. The task model is a graph built recursively
from a PETDL specification. PETDL Maker was written
in Visual Basic .NET and consists of about 2,500 lines of
code. To help test our framework, plugins were written for
MS Outlook and Mozilla Firefox to generate events and send
them to the event handler. The plugin for Outlook was writ-
ten in Visual Basic 6 and monitored events published by
the Outlook API. The plugin for Firefox was written in EC-
MAScript.

EVALUATION

We evaluated how well our language could describe practi-
cal, common tasks and whether the task monitor could fol-
low different users performing those tasks. We ran two user
studies. The first study was to create task specifications
based on observing users performing three tasks. The sec-
ond study had a different set of users perform the same tasks.
We logged events from the second study, compared the event
streams to the task specifications, and fed the event streams
into the task monitor. This enabled us to measure length of
the specifications, how many and which PETDL tags were
used, and whether the task monitor could accurately follow
different users through specified tasks.

Users and Tasks

Four subjects (one female) participated in the first study, and
eight different subjects (four female) participated in the sec-
ond study. The subjects consisted of undergraduate and grad-
uate students who were experienced users of email, word
processing, and web browsing software. In both studies,
each user performed the same three tasks.

The first task was a document editing task where a user
located an email message in Outlook’s inbox, opened the
attached document, made corrections, saved the modified
document, and sent a reply with the modified document at-
tached. The document was annotated with instructions on
how to correct each error. The second task was a web post-
ing task. The user navigated to a website using Mozilla Fire-
fox, found a specific web log entry and posted a comment.
The user interacted with the site to ensure that the post was
anonymous, to preview the comment, and to make a given
change to the comment before making the final post. The
third task was a scheduling task where the user opened an

email in Microsoft Outlook and scheduled an appointment
using Outlook’s calendar based on constraints in the email
. The user then opened a second email and again scheduled
an appointment. Because the constraints were ambiguous,
a user may have had to re-schedule the first appointment in
order to properly schedule the second appointment

We chose these three tasks because they would provide a
sufficient test of our system; they are hierarchical, crossed
application boundaries, and are representative of tasks that
users often perform. We also designed the tasks so that in-
dividual users would likely perform them differently. For
example, the constraints in the calendaring tasks sometimes
caused users to have to re-schedule the first appointment.
This would provide a good test of how well our language
and task monitor could handle variance in task execution.

Procedure

In both studies, a user performed practice tasks prior to per-
forming the experimental tasks. After questions were an-
swered, the user performed the experimental tasks. Our plu-
gins intercepted user events and sent them to the event han-
dler for logging. We also recorded a user’s screen interaction
with Camtasia. Each study lasted no more than 30 minutes.

PETDL Tag Doc Edit Web Search Scheduling Total
task 4 5 3 9
inOrder 0 0 2 2
anyOrder 0 1 1 2
optional 1 0 1 2
oneOrMore 1 0 1 2
zeroOrMore 0 0 0 0
repeatExactly 0 0 0 0
choice 1 1 0 2
event 10 9 7 24

Total tags 17 16 15 43

Table 2: Tag Frequency

MEASUREMENTS AND RESULTS

From the first study, we reviewed the event logs and screen
interaction videos to create PETDL specifications for each
of the three tasks. The process was iterative. We created
specifications for the first user, adapted them for the second
user, and so on, until we had specifications for each task that
expressed all users’ task sequences. The average length of
each task was about 254 seconds and the total time spent
constructing a PETDL file was no longer than it took to re-
view the video. After writing the specifications, we counted
the frequency of tags used, summarized in Table 2. Over-
all, the specifications required only a small number of tags
to express practical tasks.

Next, we wanted to determine how well the specifications
would express different users performing the same tasks.
Following a similar process as before, we compared the spec-

6



ifications and user event streams and classified the outcomes
as a match, a user error, or a specification error. A match
means that the specification described the event stream. A
user error was when the specification could express the event
stream, but an error occured due to the user not performing
the task as requested. For example, during the web search
task, one user posted to the wrong web log. A specification
error was when the user performed the task as requested, but
the specification did not express the event stream. This was
the most serious type of error. Results are shown in Figure
6. Though accuracy was task dependent, matching task exe-
cution sequences was good overall.

Specifications were created quickly and were relatively short
in length. This demonstrates that creating task specifications
is feasible in practice. We also fed the event streams that
were properly expressed by the specifications into the task
monitor. This was done to determine whether its algorithm
could properly match the event streams to the specifications.
In each case, the task monitor correctly matched the events
to the specifications, validating that its algorithm worked.

Figure 6: task recognition

DISCUSSION AND FUTURE WORK

We discuss how we met our system design goals. To en-
able low-investment specification of user tasks, we offer a
language that uses a small number of tags that are concise,
yet expressive, that results in low-complexity specifications,
and is accompanied by a graphical tool to help build speci-
fications. To enable tasks to be specified at multiple levels
of detail, we rely on the simple nesting structure inherent in
XML. To enable expressive specification of tasks, we pro-
vide a small set of tags that can be used to rapidly create
variants of common task execution sequences. To enable
specification of tasks that cross applications, we allow the
names of events to be prefaced by the name or instance of
the application. To accurately monitor specified tasks in the
midst of unspecified tasks, position placeholders are used to
mark where a user is relative to each task specification. This
supports multiple active tasks and multiple instances of the
same task. To support forecasting of a user’s task behavior,
we attempt to build sequence probabilities based on how a
user transitions through a task model. However, this final

design goal is still work in progress.

From our experience using the system, we also learned
lessons about how to better specify tasks. First, tasks should
not end with control tags that may optionally occur. For ex-
ample, if <zerOrMore> or <oneOrMore> are used as
the last control tag in a task, the task monitor doesn’t know
whether or not to keep waiting for more repetitions or to
mark the task as complete. Second, task authors can help
disambiguate task specifications. For example, some tasks
can be described with multiple specifications that match the
same event sequences. The same problem can be found in
regular expressions like(the)|(this) which is equiva-
lent to th((e)|(is)) . While this normally doesn’t mat-
ter for regular expressions, for task specifications it causes
ambiguity when matching events. To help overcome this
ambiguity, it is best to group together the longest sequence
of events possible in each part of a specification. Another
solution could be to review past events and consider future
transition probabilities.

Finally, our language enables an author to specify tasks at
multiple levels of detail. We found that specifications at a
finer level of detail became much more difficult to express
(and thus monitor) because there are many more possible
task execution sequences. More experience with creating
specifications for practical tasks is necessary to understand
an appropriate level of detail.

Our future work seeks to further implement algorithms for
forecasting a user’s task execution sequences, extend the plu-
gins to capture more events, create a user-level service that
defers information or attentional cues until task boundaries,
and evaluate how much this service mitigates the disruptive
effects of interruptions.

CONCLUSION

Knowledge about user task execution can help systems better
reason about when to interrupt users. To enable recognition
and forecasting of task execution, we developed a framework
for specifying and monitoring user task sequences. For task
specification, our framework provides an XML-based lan-
guage with tags inspired by regular expressions. For task
monitoring, our framework provides an event handler that
manages events from any instrumented application and a
monitor that observes a user’s transitions within and between
specified tasks. We provided examples illustrating their use
and operation. Results were also presented from a user study
that shows how our language can be used to specify practical
tasks and how our monitoring system can effectively follow a
user’s progress. Our framework could be used to instrument
the desktop environment as well as correspondence domains
for intelligent attention management.

REFERENCES

1. Adamczyk, P.D. and B.P. Bailey. If Not Now, When?
The Effects of Interruption at Various Moments Within
Task Execution.CHI, 2004, pp. 271-278.

7



2. Albrecht, D., I. Zukerman, A. Nicholson, and A. Bud.
Towards a Bayesian Model for Keyhole Plan Recogni-
tion in Large Domains.Proc. User Modeling, 1997, pp.
365-376.

3. AppleScript. http://www.apple.com/applescript.

4. Bailey, B.P., J.A. Konstan, and J.V. Carlis. The Effects
of Interruptions on Task Performance, Annoyance, and
Anxiety in the User Interface.Proc. INTERACT, 2001,
pp. 593-701.

5. Beek, P. and R. Cohen. Resolving plan ambiguity for co-
operative response generation.Proceedings of the 12th
International Joint Conference on Artificial Intelligence,
August 1991, pp. 938-944.

6. Carberry, S. Techniques for Plan RecognitionUser
Modeling and User-Adapted Interaction, 11, 2001, pp.
31-48.

7. Card, S., T. Moran, and A. Newell.The Psychology
of Human-computer InteractionLawrence Erlbaum and
Associates, 1983.

8. Czerwinski M., E. Horvitz, and S. Wilhite. A diary study
of task switching and interruptions.CHI, 2004, pp. 175-
182.

9. Franklin D., J. Budzik, and K. Hammond. Plan-based
interfaces: keeping track of user tasks and acting to co-
operate.Proc. IUI, 2002, pp. 79-86.

10. Horvitz, E., J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. The Lumiere Project: Bayesian User
Modeling for Inferring the Goals and Needs of Software
Users.Proceedings of the Fourteenth Conference on Un-
certainty in Artificial Intelligence, July 1998.

11. Horvitz, E., A. Jacobs and D. Hovel. Attention-Sensitive
Alerting. Proc. Uncertainty and Artificial Intelligence,
1999, 305-313.

12. Horvitz, E. and J. Apacible. Learning and Reasoning
about Interruption.Proc. Multimodal Interfaces, 2003.

13. Hudson, S.E., J. Fogarty, C.G. Atkeson, D. Avrahami,
J. Forlizzi, S. Kiesler, J.C. Lee and J. Yang. Predicting
Human Interruptibility with Sensors: A Wizard of Oz
Feasibility Study.CHI, 2003, 257-264.

14. Iqbal, S.T., X.S. Zheng and B.P. Bailey. Task-Evoked
Pupillary Response to Mental Workload in Human-
Computer Interaction.CHI, 2004, pp. 1477-1480.

15. Kieras, D.E., S.D. Wood, K. Abotel, and A. Hornof.
GLEAN: A Computer-Based Tool for Rapid GOMS
Model Usability Evaluation of User Interface Designs.
UIST, 1995, pp. 91-100.

16. Kirwan, B. and L.K. Ainsworth. A Guide to Task Anal-
ysisTaylor & Francis, Ltd, August 1992.

17. Lieberman, H. Exploring the Web with Reconnaissance
Agents.Communications of the ACM, 44 (8): 69-75,
2001.

18. Maglio, P., R. Barrett, C.S. Campbell, and T. Selker.
SUITOR: An Attentive Information System.Proc. IUI,
2000, pp. 169-176.

19. Maulsby, D. Inductive Task Modeling for User Interface
Customization.Proc. IUI, 1997, pp. 233-236.

20. McFarlane, D.C. and K.A. Latorella. The Scope and Im-
portance of Human Interruption in HCI Design.Human-
Computer Interaction, 17 (1): 1-61, 2002.

21. Miyata, Y. and D.A. Norman. The Control of Multi-
ple Activities. In Norman, D.A. and Draper, S.W. (eds.)
User Centered System Design: New Perspectives on
Human-Computer Interaction, Lawrence Erlbaum As-
sociates, 1986.

22. Rich, C. and C.L. Sidner. COLLAGEN: A Collaboration
Manager for Software Interface Agents.User Modeling
and User-Adapted Interaction, Vol. 8, Issue 3/4, 1998,
pp. 315-350.

23. Speier, C., J.S. Valacich and I. Vessey. The Influence of
Task Interruption on Individual Decision Making: An
Information Overload Perspective.Decision Sciences,
30 (2): 337-360, 1999.

24. Szekely, P., P. Luo, and R. Neches. Beyond Interface
Builders: Model-Based Interfaces Tools.Proceedings of
INTERCHI, April 1993, pp. 383-390.

25. Tauber, M.J. ETAG: Extended Task Action Grammar
- A language for the description of the user’s task lan-
guage.Proceedings INTERACT, Amsterdam, Elsevier,
1990.

26. Welie, M., G.C. van der Veer, and A. Eliens. An On-
tology for Task World ModelsProceedings DSV-IS’98,
1998, pp. 57-70.

8


