1,481 research outputs found

    Evaluation of accuracy of complete-arch multiple-unit abutment-level dental implant impressions using different impression and splinting materials.

    Get PDF
    Purpose: This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. Materials and Methods: A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). Results: No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 mu m; PE, 103 mu m) in terms of 3D discrepancies, irrespective of the splinting technique employed. Conclusions: Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.Article Link : http://www.ncbi.nlm.nih.gov/pubmed/2427891

    Monopole Percolation in the Compact Abelian Higgs Model

    Full text link
    We have studied the monopole-percolation phenomenon in the four dimensional Abelian theory that contains compact U(1) gauge fields coupled to unitary norm Higgs fields. We have determined the location of the percolation transition line in the plane (βg,βH)(\beta_g, \beta_H). This line overlaps the confined-Coulomb and the confined-Higgs phase transition lines, originated by a monopole-condensation mechanism, but continues away from the end-point where this phase transition line stops. In addition, we have determined the critical exponents of the monopole percolation transition away from the phase transition lines. We have performed the finite size scaling in terms of the monopole density instead of the coupling, because the density seems to be the natural parameter when dealing with percolation phenomena.Comment: 13 pages. REVTeX. 16 figs. included using eps

    Increasing risk of glacial lake outburst floods as a consequence of climate change in the Himalayan region

    Get PDF
    The greater Himalayan Mountains host the largest snow covered area outside the polar regions and serves as the source for some of the major fluvial systems of the world. The region acts as the lifeline for approximately 10% of the world’s population. The terrain is geologically active, highly susceptible to climate change processes and plays a significant role in global hydro-meteorological cycles and biodiversity. With the increasing impacts of climate change to the glaciers and ice caps during the past few decades, people living in the Himalayas have become vulnerable to a higher risk of floods, avalanches and glacial lake outburst floods(GLOFs). This study reviewed the work carried out by earlier researchers to understand the history and science of GLOFs and their potential risk to the communities in the Himalayanbelt, particularly in Pakistan

    Need of a new frontline health functionary dedicated to Non-communicable diseases in India

    Get PDF
    Majority of global deaths are attributed to noncommunicable diseases (NCDs). Along with the ageing population, burden of non-communicable diseases is also rising. India shares more than two-third of the total deaths due to NCDs in the South-East Asia Region (SEAR) of WHO. Since the awareness level about the chronic diseases and their risk factors is still limited in the low and middle income countries, it is expected that the health education based primary prevention interventions could be as successful as the first generation community oriented primary care (COPC) models. Community health workers (CHWs) are central to the primary health care approach towards health care utilization in India but do they have sufficient training.The first step in primary prevention of cardiovascular diseases is to identify individuals at high cardiovascular risk. A number of methods have been devised to calculate individual risks based on risk factor levels. Under NPCDCS in India, there is a three tier structure of NCD Clinic at block, district and state level. At the village level in Subcentre, only opportunistic screening is being done to those who visit the subcentre and are above 30 years of age. There is no provision of active screening of non-communicable diseases and their risk factors under the programme. There is no dedicated healthworker at thegrassroot level for the NCDs. Thus the authors envisages that there is a direneed for the provision of new band of community based health functionary dedicated to control the burden of NCDs

    The Phases and Triviality of Scalar Quantum Electrodynamics

    Get PDF
    The phase diagram and critical behavior of scalar quantum electrodynamics are investigated using lattice gauge theory techniques. The lattice action fixes the length of the scalar (``Higgs'') field and treats the gauge field as non-compact. The phase diagram is two dimensional. No fine tuning or extrapolations are needed to study the theory's critical behovior. Two lines of second order phase transitions are discovered and the scaling laws for each are studied by finite size scaling methods on lattices ranging from 646^4 through 24424^4. One line corresponds to monopole percolation and the other to a transition between a ``Higgs'' and a ``Coulomb'' phase, labelled by divergent specific heats. The lines of transitions cross in the interior of the phase diagram and appear to be unrelated. The monopole percolation transition has critical indices which are compatible with ordinary four dimensional percolation uneffected by interactions. Finite size scaling and histogram methods reveal that the specific heats on the ``Higgs-Coulomb'' transition line are well-fit by the hypothesis that scalar quantum electrodynamics is logarithmically trivial. The logarithms are measured in both finite size scaling of the specific heat peaks as a function of volume as well as in the coupling constant dependence of the specific heats measured on fixed but large lattices. The theory is seen to be qualitatively similar to λϕ4\lambda\phi^{4}. The standard CRAY random number generator RANF proved to be inadequateComment: 25pages,26figures;revtex;ILL-(TH)-94-#12; only hardcopy of figures availabl

    CSF oligoclonal bands in multiple sclerosis

    Get PDF
    Objective: To study the significance of oligoclonal bands in neurological disorders, specifically in Multiple Sclerosis (MS). Methods: The study was designed to assess the sensitivity and specificity of the test methodology of CSF electrophoresis by performing the retrospective analysis of CSF samples sent for oligoclonal bands (OCB). A total of 603 samples were received by the Clinical Laboratories, Department of Pathology of The Aga Khan University, during a period of 54 months (January 1993-June 1997). All of these samples were analyzed by performing CSF protein electrophoresis. One hundred thirty three out of 603 samples showed evidence of OCB. Out of these, 24 patients were registered with Section of Neurology, Department of Medicine, The Aga Khan University Hospital. These 24 patients were finally selected for analysis. Relevant clinical details such as age, sex and clinical presentations were recorded. Results: Fifteen (62%) out of 24 patients with positive OCB were diagnosed as cases of MS. Four (17%) patients were diagnosed to have subacute sclerosing panencephalitis (SSPE). Five (21%) patients were having other inflammatory neurological disorders. Conclusion: The overall relative sensitivity and specificity for multiple sclerosis were found to be 100% and 62.5% respectively. Lack of specificity was attributed to the fact that OCB were positive in other neurological disorders as well

    Scaling laws for the 2d 8-state Potts model with Fixed Boundary Conditions

    Full text link
    We study the effects of frozen boundaries in a Monte Carlo simulation near a first order phase transition. Recent theoretical analysis of the dynamics of first order phase transitions has enabled to state the scaling laws governing the critical regime of the transition. We check these new scaling laws performing a Monte Carlo simulation of the 2d, 8-state spin Potts model. In particular, our results support a pseudo-critical beta finite-size scaling of the form beta(infinity) + a/L + b/L^2, instead of beta(infinity) + c/L^d + d/L^{2d}. Moreover, our value for the latent heat is 0.294(11), which does not coincide with the latent heat analytically derived for the same model if periodic boundary conditions are assumed, which is 0.486358...Comment: 10 pages, 3 postscript figure

    Secrecy content of two-qubit states

    Get PDF
    We analyze the set of two-qubit states from which a secret key can be extracted by single-copy measurements plus classical processing of the outcomes. We introduce a key distillation protocol and give the corresponding necessary and sufficient condition for positive key extraction. Our results imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66}, 060302 (2002), for a secure key distribution using the six-state scheme is tight. Remarkably, an optimal eavesdropping attack against this protocol does not require any coherent quantum operation.Comment: 5 pages, RevTe
    corecore