57 research outputs found

    Livelihood Vulnerability of Semi-Mobile Pastoral Communities to Climate Change in Arid and Semiarid of Iran

    Get PDF
    Climate change is impacting on natural resource based livelihood systems such as pastoralist communities in arid and semi-arid regions. Vulnerability to climate change refers to the potential of a system to be harmed by this external stress. The level of vulnerability of pastoral communities and the effective components determine the extent of climate change impacts on these communities and thereby help identify institutional options that have the potential to reduce their vulnerability. This study assessed climate change vulnerability of semi-mobile pastoralist communities in five main regions (Gozm, Kaht, Madan, Rochon and Jarob) of Khabr rangelands, Kerman, Iran using the Livelihood Vulnerability Index (LVI). The data comprised of primary data on seven main components including socio-demographic profile, livelihood strategies, social networks, health, food, water availability, natural disasters and climate variability which were collected through survey of 70 semi-mobile pastoral households, and secondary data on rainfall and temperature. Data were aggregated using composite LVI index and vulnerabilities of communities were compared. Results suggested that semi-mobile pastoralists in Rochon region had the highest (0.63) LVI showing relatively the greatest vulnerability to climate change impacts in terms of Socio-Demographic Profile, Livelihood Strategies and Health while Kaht region had the least (0.49) LVI showing relatively the smallest vulnerability to climate change impacts. The results of this study are useful to access pastoralist communities’ vulnerability and set risk management policies. Keywords: climate change; livelihood vulnerability index ; semi-mobile pastoralist

    ASSA models and GIS integration in the determination of flooding point in different return periods

    Get PDF
    The quantitative and qualitative management of urban runoff is a very complicated, and the importance of it is added every day. Regardless of the economic and social impacts, water engineers always need to know how to respond to a city's drainage system against different climatic conditions. In this research, the combination of ASSA and GIS models in the returns periods of 2, 5, 10, 50 years were used to determine the flooding points in the 9th district of Mashhad municipality. First, the watershed boundaries, canals and nodes maps was extracted from the GIS environment. Then, the ASSA model was simulated for a one hour design for a different return period; the outputs of the model were analyzed in the GIS software environment. The results showed that with increasing rainfall return period, 2806 nodes in underground and superficial networks of 114, 178 and 226 nodes were flooded and inundation during the return periods of 2, 5, 50, 10 years, respectively. Field surveys, existing elevation digital maps of the urban runoff network and simulations have shown that the main cause of inundation is the small size of the cross section of the duct, as well as the low slope in some parts of the network. Adaptation of the results of the simulation of rainfall-induced waterlogging in the study area with what happens every year confirms indicates the correctness of the simulations of the model. Moreover, simulation results of the model also showed that there is a good agreement between the simulated results and the measurement

    Cannabinoid Agonists Inhibit Neuropathic Pain Induced by Brachial Plexus Avulsion in Mice by Affecting Glial Cells and MAP Kinases

    Get PDF
    Many studies have shown the antinociceptive effects of cannabinoid (CB) agonists in different models of pain. Herein, we have investigated their relevance in neuropathic pain induced by brachial plexus avulsion (BPA) in mice.Mice underwent BPA or sham surgery. The mRNA levels and protein expression of CB(1) and CB(2) receptors were assessed by RT-PCR and immunohistochemistry, respectively. The activation of glial cells, MAP kinases and transcription factors were evaluated by immunohistochemistry. The antinociceptive properties induced by cannabinoid agonists were assessed on the 5(th) and 30(th) days after surgery. We observed a marked increase in CB(1) and CB(2) receptor mRNA and protein expression in the spinal cord and dorsal root ganglion, either at the 5(th) or 30(th) day after surgery. BPA also induced a marked activation of p38 and JNK MAP kinases (on the 30(th) day), glial cells, such as microglia and astrocytes, and the transcription factors CREB and NF-κB (at the 5(th) and 30(th) days) in the spinal cord. Systemic treatment with cannabinoid agonists reduced mechanical allodynia on both the 5(th) and 30(th) days after surgery, but the greatest results were observed by using central routes of administration, especially at the 30(th) day. Treatment with WIN 55,212-2 prevented the activation of both glial cells and MAP kinases, associated with an enhancement of CREB and NF-κB activation.Our results indicate a relevant role for cannabinoid agonists in BPA, reinforcing their potential therapeutic relevance for the management of chronic pain states

    Phase I Hydroxylated Metabolites of the K2 Synthetic Cannabinoid JWH-018 Retain In Vitro and In Vivo Cannabinoid 1 Receptor Affinity and Activity

    Get PDF
    K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9)-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R).JWH-018, five potential monohydroxylated metabolites (M1-M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3)H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35)S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i) values that were lower than or equivalent to Δ(9)-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9)-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9)-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9)-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis

    Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives

    Get PDF
    © American Geophysical Union: Shafii, M., & Tolson, B. A. (2015). Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research, 51(5), 3796–3814. https://doi.org/10.1002/2014WR016520The simulated outcome of a calibrated hydrologic model should be hydrologically consistent with the measured response data. Hydrologic modelers typically calibrate models to optimize residual-based goodness-of-fit measures, e.g., the Nash-Sutcliffe efficiency measure, and then evaluate the obtained results with respect to hydrological signatures, e.g., the flow duration curve indices. The literature indicates that the consideration of a large number of hydrologic signatures has not been addressed in a full multiobjective optimization context. This research develops a model calibration methodology to achieve hydrological consistency using goodness-of-fit measures, many hydrological signatures, as well as a level of acceptability for each signature. The proposed framework relies on a scoring method that transforms any hydrological signature to a calibration objective. These scores are used to develop the hydrological consistency metric, which is maximized to obtain hydrologically consistent parameter sets during calibration. This consistency metric is implemented in different signature-based calibration formulations that adapt the sampling according to hydrologic signature values. These formulations are compared with the traditional formulations found in the literature for seven case studies. The results reveal that Pareto dominance-based multiobjective optimization yields the highest level of consistency among all formulations. Furthermore, it is found that the choice of optimization algorithms does not affect the findings of this research.NSERCDepartment of Civil and Environmental Engineering at University of Waterlo

    HESS Opinions: Advocating process modeling and de-emphasizing parameter estimation

    No full text
    Since its origins as an engineering discipline, with its widespread use of "black box" (empirical) modeling approaches, hydrology has evolved into a scientific discipline that seeks a more "white box" (physics-based) modeling approach to solving problems such as the description and simulation of the rainfall–runoff responses of a watershed. There has been much recent debate regarding the future of the hydrological sciences, and several publications have voiced opinions on this subject. This opinion paper seeks to comment and expand upon some recent publications that have advocated an increased focus on process-based modeling while de-emphasizing the focus on detailed attention to parameter estimation. In particular, it offers a perspective that emphasizes a more hydraulic (more physics-based and less empirical) approach to development and implementation of hydrological models

    GIS-based flow routing with the distributed hydrological wetspa model in the Ziarat river basin - Gorgan, Iran

    Get PDF
    The GIS-based distributed hydrological model, WetSpa, whose flow routing method is described in this paper is suitable for flood prediction and watershed management on catchment scale. The model predicts outflow hydrographs at the basin outlet or at any converging point in the watershed, and it does so at a user-specified time step. The model is physically based, spatially distributed and timecontinuous. This paper focuses on the GISbased diffusive transport approach for the determination of rainfall runoff response and flood routing through a catchment. The watershed is represented as a grid cell mesh, and routing of runoff from each cell to the basin outlet is accomplished using the first passage time response function based on the mean and variance of the flow time distribution, which is derived from the advection–dispersion transport equation.The flow velocity is location dependent and calculated in each cell by the Manning equation based on the local slope, roughness coefficient and hydraulic radius. The hydraulic radius is determined according to the geophysical properties of the catchment and the flood frequency. The total direct runoff at the basin outlet is obtained by superimposing all contributions from every grid cell. The model is tested on the Ziarat _Gorgan watershed with 4years of observed hourly rainfall and discharge data, and the results are in excellent agreement with the measured hydrograph at the basin outlet

    Diagnosis of mycobacterium tuberculosis by PCR technique

    No full text
    In the present research work, a specific 285 bp DNA fragment was used for detection of Mycobacterium Tuberculosis complex. 100 samples were chosen randomly from sputum specimens that were negative with conventional methods (direct smear, culture, and radiometry), and examined by PCR; 7 cases of them were positive. Also, 20 sputum specimens were obtained from suspected patients to tuberculosis, and examined by three methods (culture, radiometry and PCR). The sensitivity of PCR compared with culture and radiometry was 100%, the specificity of PCR compared with culture was 91.66%, and compared with radiometry was 68.75%. Therefore, results of PCR revealed, this method is more sensitive, specific and rapid and it can detect ycobacterial infectious agents within one day period
    • …
    corecore