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Abstract The simulated outcome of a calibrated hydrologic model should be hydrologically consistent
with the measured response data. Hydrologic modelers typically calibrate models to optimize residual-
based goodness-of-fit measures, e.g., the Nash-Sutcliffe efficiency measure, and then evaluate the obtained
results with respect to hydrological signatures, e.g., the flow duration curve indices. The literature indicates
that the consideration of a large number of hydrologic signatures has not been addressed in a full multiob-
jective optimization context. This research develops a model calibration methodology to achieve hydrologi-
cal consistency using goodness-of-fit measures, many hydrological signatures, as well as a level of
acceptability for each signature. The proposed framework relies on a scoring method that transforms any
hydrological signature to a calibration objective. These scores are used to develop the hydrological consis-
tency metric, which is maximized to obtain hydrologically consistent parameter sets during calibration. This
consistency metric is implemented in different signature-based calibration formulations that adapt the sam-
pling according to hydrologic signature values. These formulations are compared with the traditional for-
mulations found in the literature for seven case studies. The results reveal that Pareto dominance-based
multiobjective optimization yields the highest level of consistency among all formulations. Furthermore, it is
found that the choice of optimization algorithms does not affect the findings of this research.

1. Introduction

1.1. Background
The calibration problem in the context of hydrological modeling is to find a parameter set whose model
output best resembles the observed system’s behavior [Andreassian et al., 2014; Duan et al., 1992, 1993; Kol-
lat et al., 2012; Pechlivanidis et al., 2014; Yapo et al., 1998]. The classical statistical approach [Bates and Watts,
1988; Seber and Wild, 1989] minimizes the sum of squared residuals (i.e., the difference between the
observed and simulated system’s behavior) to find the most appropriate parameter set. Other statistical
methods address the comparison of simulations and observations based on a Bayesian viewpoint [Box and
Tiao, 1973] and specify a likelihood function, which is then utilized to find the posterior distribution of
model parameters and outcomes [e.g., Ajami et al., 2007; Kavetski et al., 2006; Kuczera, 1983; Thiemann et al.,
2001; Vrugt et al., 2009b]. Among other mathematical strategies for model calibration are generalized likeli-
hood approaches [Beven, 2006], the application of fuzzy set theory [Seibert and McDonnell, 2002], multicrite-
ria calibration [e.g., Boyle et al., 2000; Gupta et al., 1998; Shafii and Smedt, 2009; Vrugt et al., 2003b], etc.

It has been argued by researchers [Gupta et al., 1998, 2005; Wagener and Gupta, 2005] that the average or
aggregate measures of model data similarity such as sum of squared errors or Nash-Sutcliffe Efficiency (NSE)
measure [Nash and Sutcliffe, 1970] do not provide the modeler with enough power to make a meaningful
comparative evaluation of the consistency in model form, the equations, and function, e.g., representations
such as storage or discharge—also more detailed analyses on NSE are provided elsewhere [Criss and Winston,
2008; Gupta et al., 2009; Schaefli and Gupta, 2007]. To effectively evaluate models, Gupta et al. [2008] advocate
an approach to model evaluation based on model diagnostics with a clear diagnosing power to detect struc-
tural model deficiencies. The diagnostic problem is defined as the identification of modeling components
which, when assumed to be functioning properly, explain the discrepancy between the simulated and
observed behavior [Gupta et al., 2008]. For instance, if there are any problems in the simulation of overland
flow processes by models, the infiltration or saturation excess components of the model might be at fault.
More recently, diagnostic model evaluation approach has become an attractive topic in the literature [e.g.,
Herbst et al., 2009; Hrachowitz et al., 2014; Ley et al., 2011; Oudin et al., 2010; Viglione et al., 2013].
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To develop rigorous diagnostic-based model evaluation methods, numerous studies employ hydrological
signatures that reflect the functional behavior of the catchment [Black, 1997; Wagener et al., 2007] that a
model should be able to reproduce [e.g., Carrillo et al., 2011; Clark et al., 2011; Eder et al., 2003; Jothityang-
koon et al., 2001; McMillan et al., 2012; Wagener and Montanari, 2011]. The signature-based model evalua-
tion approach first uses observed data to identify a number of indices or signatures that quantify relevant
aspects of the system behavior or watershed functions. Then, the evaluation approach tests the ability of
the watershed model to reproduce these signatures by analyzing the similarities and differences between
observed and simulated signatures. The literature shows a variety of signatures proven to be useful for
model evaluation including the flow duration curve (FDC) [Westerberg et al., 2011; Yadav et al., 2007; Yilmaz
et al., 2008], the spectral density of runoff [Montanari and Toth, 2007; Winsemius et al., 2009], the rising limb
density [Shamir et al., 2005; Yadav et al., 2007], the base flow index [Arnold and Allen, 1999; Vrugt and
Sadegh, 2013], and the peak distribution [Sawicz et al., 2011], among others.

Studies applying hydrological signatures can be categorized as either signature-based model selection or
signature-based model calibration. In signature-based model selection (elaborated on in section 1.2), signa-
tures are employed to make a selection among candidate model structures for a given catchment. These
model structures are calibrated, independent from the signatures analysis. Studies applying signatures to
evaluate the suitability of a single model structure (model evaluation) would fall into this category as well.
In contrast, signature-based model calibration (described in detail in section 1.3) involves the implementa-
tion of hydrological signatures in the calibration of a particular model structure. As such, the calibrated
parameter values are dependent on the signatures considered.

1.2. Signature-Based Model Selection
Hydrological signatures serve as a link between process understanding and models and have been tradi-
tionally used to identify an acceptable model structure for a given catchment. For instance, Jothityangkoon
et al. [2001] incorporated signatures such as the interannual variability of runoff, mean monthly variation of
runoff, and FDC in a downward approach for identification of the model components required at different
modeling time scales. More recently, McMillan et al. [2011] have used a number of diagnostic tests based on
different field data, soil moisture, flow, precipitation, etc., to identify an appropriate structure for hydrologi-
cal modeling at a given catchment. Note that the diagnostic tests developed in McMillan et al. [2011] are
qualitative plots that are designed based on the information contained in field data.

Euser et al. [2013] demonstrate a new signature-based framework to determine the most appropriate model
structure from the many structures available. This determination is accomplished by coupling the signatures
with principal component analysis. Martinez and Gupta [2010] developed a diagnostic multicriteria model
performance evaluation strategy applied to a set of 764 catchments across the United States, aiming to find
the most parsimonious plausible model hypothesis. Their findings reveal that conventional regression-
based measures (aggregate measures of model data similarity such as sum of squared errors) are not suffi-
cient, and to be more confident about the consistency of model results, measures of water balance and
hydrologic variability, among others, must be examined.

1.3. Signature-Based Model Calibration
Yadav et al. [2007] study the relationship between hydrological signatures and the physical characteristics of
watersheds and consequently identify the hydrological indices important for constraining discharge such as
the number of annual occurrences with considerably high flow, runoff ratio, and slope of FDC. For instance,
Yadav et al. [2007] demonstrate that runoff ratio constrains the ensemble medium flows for all the studied
catchments. This means that, for the simulation model to be working properly, the parameter set needs to be
adjusted in such a way that the runoff ratio of simulations remains similar to that of observations. As a result,
such hydrological signatures can be used as calibration objectives in the parameter adjustment process.

The literature shows that several approaches have been employed to incorporate hydrological signatures in
model calibration and parameter estimation in hydrological modeling. For instance, researchers use Monte
Carlo Simulation (MCS) to identify hydrologically consistent parameter sets (i.e., resulting in signature values
contained in a predefined range that is thought to be acceptable) in the calibration process [Hingray et al.,
2010; Pfannerstill et al., 2014; Westerberg et al., 2011; Winsemius et al., 2009]. This approach is inspired from
the concept of level of acceptability in calibration and uncertainty estimation in hydrological modeling
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[Beven, 2006; Liu et al., 2009]. Such an approach is also applied to flood frequency estimation in Blazkova
and Beven [2009] where consistent parameter sets are identified based on limits of acceptability for hydro-
logical summary information (e.g., rainfall characteristics, frequency characteristics of snow water equiva-
lent, etc.). Consistent with the signature satisfaction concept, Gharari et al. [2014] provide an alternative
approach for parameter identification in the absence of time series data focused on satisfying all parameter
and process constraints derived from prior (or expert) knowledge. Their approach is based on stepwise
Monte Carlo sampling, where the satisfaction of parameter and process constraints is used to restrict the
solution space. Vrugt and Sadegh [2013] was the first to apply the approximate Bayesian computation (ABC)
concept from the statistics literature [e.g., Del Moral et al., 2012; Marjoram et al., 2003; Sisson et al., 2007] to
hydrology as a tool for using hydrological signatures in diagnostic model evaluation, aiming to pinpoint the
malfunctioning parts of the hydrologic model.

Martinez and Gupta [2011] address the notion of hydrological consistency and suggest that the model struc-
tures and parameters obtained in the classical maximum likelihood estimation must be constrained to
reproduce desired hydrological characteristics of the process under investigation. These characteristics can
be quantified using multiple hydrological signatures. Thus, an ideal signature-based model calibration
would use ‘‘numerous’’ hydrological signatures to guide the parameter search toward regions of hydrologi-
cal consistency in the search space. The literature shows that a few studies have attempted to implement
such an idea in model calibration. For instance, Seibert and McDonnell [2002] calibrate the rainfall-runoff
model against both standard calibration measures and a number of criteria derived from the soft data (qual-
itative knowledge from the experimentalist that cannot be used directly as exact numbers). Yilmaz et al.
[2008] utilize signature information to progressively constrain the ranges of parameters that are found to
influence the signature indices, reducing the prior ranges to the intervals associated to the best signature
values. Vrugt and Sadegh [2013] consider four signatures and build corresponding likelihood-type measures.
They then use an iterative Monte Carlo sampling scheme to sample parameter sets that show hydrologic
consistency according to these signature-based likelihood-type measures. van Werkhoven et al. [2009] used
only two signature-based measures in their optimization-based model calibration scheme.

The aforementioned studies demonstrate that only a limited number of signature-based measures have
been directly used in model calibration, which might be due to computational limitations in multiobjective
optimization associated with many objective functions [Pokhrel et al., 2012]. Consequently, to implement
many signatures, rather than a full multiobjective analysis, researchers conduct traditional calibration (opti-
mization-based approaches) first, and then postprocess these results to filter out the inconsistent parameter
sets. For example, in some of the experiments provided in Pokhrel et al. [2012] and Martinez and Gupta
[2011], model calibration is performed using mean squared errors (MSE) to generate candidate-calibrated
parameter sets, and, subsequently, hydrological signatures are employed to identify the most appropriate
subset of these parameter sets. A promising and seemingly unexplored approach to signature-based model
calibration would be to apply multiobjective optimization concepts with the explicit objective of optimizing
the hydrological consistency with respect to many hydrological signatures.

1.4. Research Outline
This study develops novel calibration formulations that utilize both residual-based goodness-of-fit measures
and many hydrological signatures as calibration objectives. Sampling in the proposed methodology is con-
ducted using optimization algorithms, with objectives formulated to simultaneously optimize goodness-of-
fit measures as well as hydrological consistency. The latter is equivalent to finding parameter sets that
reproduce acceptable signature values considering a predefined acceptability level for each signature. If a
parameter set yields acceptable values for all signatures, it is considered as fully hydrologically consistent.

The main objective of this research is to formulate and solve a calibration problem where signature quality
(measured by a signature scoring function based on simulated versus measured signatures) is directly
assessed in the process of parameter search performed by an optimization algorithm. As mentioned earlier,
common practice in the literature is either based on signature-based Monte Carlo simulations or to postpro-
cess the results of standard calibration routines with respect to many signatures to identify hydrologically
consistent parameter sets. Therefore, the implementation of many signatures in a full optimization frame-
work (i.e., this research) is novel.

The first contribution of this research is to quantify the hydrological consistency based on scoring signa-
tures using their predefined acceptability thresholds. Scoring signatures based on deviations from the limit
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of acceptability has been previously reported in the literature [Blazkova and Beven, 2009]. However, this
study develops a novel scoring approach that enables the optimization algorithm to employ the resulting
consistency metric in the calibration process. The second contribution is to identify the most suitable opti-
mization approach to obtain hydrologically consistent parameter sets. As such, multiple sampling formula-
tions are introduced and also compared with the two most common signature-based formulations in the
literature; this comparison is conducted on the basis of hydrological consistency. The formulations in this
research are shown to handle as many as 15 objectives (including 13 signature-based criteria and 2
goodness-of-fit measures) simultaneously and can produce more hydrologically consistent parameter sets
in comparison to traditional approaches in the literature [e.g., Pokhrel et al., 2012; Winsemius et al., 2009; Yil-
maz et al., 2008] that do not explicitly use consistency to guide the sampling for candidate parameter sets.

2. Methodology

In signature-based model calibration, the modeler needs to identify a set of relevant hydrological signa-
tures, and then, evaluate the hydrological consistency of the results. Consider a standard calibration that is
conducted using a sampling procedure that continually adjusts the parameter set based on the optimiza-
tion of the calibration objectives. In this way, each sampled parameter set is a potential solution to the cali-
bration problem and (if evaluated against a number of hydrological signatures) satisfies a subset of all
signatures. If all solutions evaluated in the calibration process are retained in an archive (called the sample
set), the hydrological consistency of the results can be visualized using Figure 1—that is, a conceptual graph
considering a hypothetical calibration problem. The horizontal and vertical axes in Figure 1 represent the
proportion of satisfied signatures (Psignatures) and sampled solutions (Psolutions), respectively. For any point in
Figure 1, the coordinates (i.e., proportions) are computed based on the following equations:

Psignatures5k=K (1)

Psolutions5m=M (2)

where Psignatures and Psolutions are the horizontal and vertical coordinates (proportions), k is the number of satis-
fied signatures, K is total number of signatures considered, m is the number of solutions satisfying at least k
signatures, and M is total number of solutions in the archive. For instance, the coordinates of the point shown
with a triangle in Figure 1 are 0.6 and 0.4, which means that 40% of the solutions in the sample set satisfy at
least 60% of the signatures considered. Modelers are particularly interested in calibration approaches that
maximize the number of signatures satisfied. As such, we view the number of signatures satisfied as being the
primary criterion for judging calibration result quality while the proportion of satisfied signatures is a second-
ary criterion. Ideally, a significant proportion the M solutions would be fully hydrologically consistent and thus
satisfy all K signatures. However, as long as models are imperfect, it will typically be impractical to expect cali-
bration to lead to the satisfaction of all K signatures (e.g., assuming K� 10). The results obtained in the numer-
ical experiments of this research will be illustrated in graphs based on Figure 1.

The methods used to compare simulated and observed hydrological signatures and then transform them
into calibration criteria scores are described in section 2.1. Afterward, in section 2.2, we elaborate on the
aggregation of these criteria scores into a single overall consistency metric to be implemented in different
optimization-based calibration approaches. These calibration approaches (and all possible formulations) are
subsequently detailed in section 2.3.

2.1. Hydrological Signature Quality and Scoring
The numerical experiments in this study consider 13 signatures that are described in the Appendix A. Each sig-
nature is computed from the observed data (Sobs

i ) and the corresponding simulated model result (Ssim
i ) and

then the deviation between these two quantities must be translated into a normalized criterion value by way
of some scoring function. The signature deviations (Di) are computed on a relative basis, consistent with past
studies such as Yilmaz et al. [2008] and Blazkova and Beven [2009], via equation (3) for all signatures:

Di5
Sobs

i 2Ssim
i

Sobs
i

3100 (3)

Figure 2 shows the two different scoring functions utilized in this paper that return a signature score (Ci) in
the 0–1 range as a function of the signature deviation. In both cases, the calibration objective for a given
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signature is reduced to simply attaining a signa-
ture deviation that is within some modeler
defined acceptable range based on the accept-
ability threshold, D�i . Here we define the scoring
functions to be symmetric but in general, these
functions need not be symmetric about 0, all
that is required in our approach is to ensure
that D�i is nonzero. The simplest approach is the
binary scoring function, seen in Figure 2a,
which defines a simulated signature result to
be either satisfactory (Ci 5 1) or unsatisfactory
(Ci 5 0). Although not common in hydrology,
the binary scoring function has been used in
Komuro et al. [2006]. Figure 2b shows a continu-
ous scoring function (a piecewise linear func-
tion) that scores the distance a simulated
signature is from being satisfactory and thus
can take any fractional value between 0 and 1
when the signature is not satisfied. Continuous
scoring functions are more common in hydrol-

ogy [e.g., Blazkova and Beven, 2009] and strictly speaking need not be piecewise linear. The continuous scor-
ing function, defined in equation (4), requires additional information from the modeler to define the function
parameter Di;max and here we select the range ½2100%; 100%� for all signatures.

CðiÞ5

1; jDi j � jD�i j

0; jDi j > jDi;max j
jDi;max j2jDij
jDi;max j2jD�i j

; Otherwise

8>>>><
>>>>:

(4)

The proposed scoring methodology is independent from the type of signatures used in the calibration
study, and it can utilize every signature for which an acceptability threshold can be defined. Furthermore,
the proposed methodology can also implement standard goodness-of-fit measures such as NSE formulated
as follows:

NSE512r2
e=r

2
o (5)

where r2
e is the variance of residuals (i.e., difference between simulations and observations), and r2

o is the
variance of observations; note that in this paper the measure calculated based on discharge is termed the
NSE of high flows, whereas the measure calculated based on log-transformed discharge is termed the NSE
of low flows. If the modeler considers an acceptability threshold for NSE, this measure can be directly imple-
mented in the proposed framework. However, since it is not common to optimize NSE up to a threshold,
we will also develop formulations (in section 2.3.2.3) that are capable of optimizing both NSE and the scor-
ing functions in Figure 2.

Figure 1. Conceptual graph reflecting the hydrological consistency in a
hypothetical calibration problem.

Figure 2. Scoring methods to transform hydrological signature deviation Di to calibration criterion C(i) based on its acceptability threshold
(D�i ) and the maximum plausible value (Di,max): (a) the binary method and (b) the linear method.
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2.2. Overall Hydrological Consistency Metric
The overall hydrological consistency metric must be defined as a function that aggregates all of the
signature scores defined in the previous section. This metric, designed to be maximized, is formulated
based on the number of satisfied signatures (i.e., signature scores of 1.0) as well as some information
about the amount of deviation from the acceptability threshold obtained from nonsatisfied scoring
functions. Given a parameter set h and I signatures, when the values of all I signature scores are com-
puted, these values are sorted in a descending order where C(1) indicates the highest score value and
C(I) indicates the lowest score value. Thus, the satisfied signatures (score of 1.0) are placed at the top
after sorting, followed by nonsatisfied signatures (score less than 1.0). Next, the overall consistency
metric (Coverall) is calculated in equation (6) as the sum of the highest n�11 score values, where n� is
the number of satisfied signatures:

CoverallðhÞ5
Xn�11

i51

CðiÞ (6)

The signature located at rank ðn�11Þ is the one that is the closest (among nonsatisfied signatures) to the
acceptability level. The resulting sum is considered as the overall consistency value of parameter set h. In
other words, Coverall is a number where the integer part equals the number of satisfied signatures and the
fractional part is calculated based on the closest nonsatisfied signature to the acceptability threshold and is
equal to Cn�11. This intentionally ignores the simulated signatures that are the least consistent with the
observed signatures based on our assumption that in typical model calibration problems, there will be sig-
natures that cannot be satisfied and for these signatures there is little to no value in driving them, for exam-
ple, from levels that are completely inconsistent to levels that are marginally better but still inconsistent.
The overall consistency metric can be maximized to obtain the most hydrologically consistent parameter
set. This consistency metric can be implemented in the calibration process using different approaches,
which are described in the following section.

2.3. Signature-Based Calibration Approaches
As with all signature-based calibration literature noted in this study, it is assumed that the model calibration
involves searching for parameter sets with good quality or optimal values of one or more goodness-of-fit
measures (in addition to optimizing hydrologic consistency). Two fundamentally different approaches to
signature-based calibration are to (1) implement a parameter sampling scheme that does not adapt or
respond to the degree of hydrologic consistency (approach 1 described in section 2.3.1) and (2) utilize a
parameter sampling scheme that adapts to the degree of hydrologic consistency of previously sampled
parameter sets (approach 2 described in section 2.3.2).

2.3.1. Approach 1: Parameter Search Independent of Hydrologic Consistency
The first approach is consistent with most previous implementations of signature-based model calibration
[Hingray et al., 2010; Martinez and Gupta, 2011; Pokhrel et al., 2012; Winsemius et al., 2009; Yilmaz et al.,
2008]. Two sampling strategies are applied in the first approach including (i) Monte Carlo sampling using
the prior parameters range, called A1-MC, and (ii) sampling using a biobjective optimization algorithm
(AMALGAM in this study), called A1-BO. The latter considers two calibration objective functions, NSE of flow
and NSE of log-transformed flow representing high and low-flow performance measures, respectively. In
both strategies, once the sampling terminates, the entire sample set is postprocessed to evaluate the simu-
lated and observed signature values for each parameter set and to calculate its consistency metric accord-
ingly. Note that approach 1 is common practice in the signature-based calibration literature and is
considered as the benchmark in this study.

2.3.2. Approach 2: Parameter Search Guided by Hydrologic Consistency
The second approach does not consider postprocessing and instead employs hydrological signatures
throughout the calibration process, specifically during parameter optimization. This approach is in fact what
is proposed in this research. As such, multiple formulations are considered in this approach based on either
criteria aggregation or Pareto-based multiobjective optimization. This study aims at evaluating many differ-
ent optimization formulations (including single, bi, and multiobjective) that can assess and respond to
hydrological consistency throughout the parameter adjustment process.
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2.3.2.1. Single-Objective Formulation: A2-SO
The first formulation, called A2-SO, aggregates the goodness-of-fit measures and hydrological signatures
into a single objective, the consistency metric defined by equation (6), and applies a single-objective opti-
mization algorithm to maximize the consistency metric. To implement goodness-of-fit measures (such as
NSE) in this formulation, a suitable acceptability threshold must be defined. NSE is used in the numerical
experiments in this study, and two acceptability thresholds are considered; 0.5 and 0.7. The continuous
scoring functions defined for goodness-of-fit measures are conceptually similar to Figure 2b except that for
NSE, the ideal NSE occurs at the end of the NSE range (not 0). As such, the NSE scoring functions are piece-
wise linear; with a value of 0 for any NSE equal or below 0, a value of 1.0 for any NSE equal or above 0.5 (or
0.7), and a linearly interpolated 0–1 score for NSE values between 0 and 0.5 (or 0.7). Considering two NSEs
for low and high flows in addition to 13 hydrological signatures scores using the continuous scoring func-
tion (Figure 2a), the calibration problem aggregates 15 calibration objectives into the single consistency
metric via equation (6). To sample parameter sets from the search space in A2-SO, the DDS optimization
algorithm [Tolson and Shoemaker, 2007] is applied.

2.3.2.2. Biobjective Formulation: A2-BO
Another formulation is considered in the second approach, called A2-BO, where two objectives are defined
and then a multiple objective optimization algorithm is applied to approximate the trade-off between these
objectives. The first objective aggregates the goodness-of-fit measures into one value (i.e., the average NSE of
low and high flows). Thus, this continuous objective can be defined based on all desired goodness-of-fit meas-
ures assuming they have the same scale. The second objective—also continuous—focuses only on hydrologic
signatures and is the consistency metric defined by equation (6) that aggregates only the signatures (i.e.,
excluding NSEs). This formulation yields a standard biobjective optimization problem, which can be solved
using a multiobjective optimization algorithm; AMALGAM [Vrugt and Robinson, 2007] is used in this study.

2.3.2.3. Multiobjective Formulation: A2-MO
The third formulation in the second approach, called A2-MO, conducts calibration through Pareto-based
multiobjective optimization where a separate objective is defined for each signature and each goodness-of-
fit measure. This formulation considers the same 15 goodness-of-fit measures and hydrological signatures
used in formulation A2-SO. However, the continuous NSE goodness-of-fit measures are used directly as
objectives (to be maximized), i.e., no need to any corresponding acceptability thresholds. A2-MO also differs
from A2-SO in the sense that it does not aggregate the objectives into a single objective via the hydrologi-
cal consistency metric. For the signature-based calibration problem addressed in this study, the most
straightforward Pareto-based optimization is to directly use individual scores defined in equation (4) as the
calibration objectives. However, as elaborated in the rest of this section, there are major issues associated
with such an implementation.

The multiobjective optimization literature shows that as the number of objectives increases, when the
objectives are not aggregated, the proportion of candidate solutions sampled during optimization that are
nondominated (or Pareto solutions) tends to become large. This issue is termed dominance resistance and
is known to slow the search [Farina and Amato, 2004; Fleming et al., 2005; Purshouse and Fleming, 2007].
Moreover, Hadka and Reed [2012] demonstrate the necessity of an epsilon dominance archive to maintain
diversity when applying multiobjective evolutionary algorithms (MOEAs) to problems with more than three
objectives. They also report that most MOEAs do not use such an approach to archiving. Nonetheless, solv-
ing such a many-objective problem in this way can require an incredibly large computational budget. As a
result, the multiobjective benchmarking study by Hadka and Reed [2012] as well as most other similar stud-
ies consider optimization problems with eight or fewer objectives.

Because more than 10 signatures are implemented in this study, it is assumed that a multiobjective calibra-
tion problem formulated as a many-objective optimization problem with 10 or more continuous value
objectives (e.g., to minimize |Di| for all i 5 1, . . ., 13 signature-based measures and to maximize two NSEs; 15
objectives in total) will cause the dominance resistance issue. Indeed, preliminary tests using these continu-
ous objectives demonstrated very poor algorithm performance. Therefore, the optimization of many contin-
uous objectives is not considered here. In other words, the scoring method shown in Figure 2b is not
appropriate to define objectives in this multiobjective formulation.

Instead, the multiobjective calibration problem (given a large number of objective functions) is approached by
converting the continuous objectives into binary objectives utilizing the level of acceptability for each
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signature-based measure. In other words, the simple binary scoring function demonstrated in Figure 2a is used
where the satisfied signatures are given a value of 1 whereas nonsatisfied signatures are assigned a value of 0.
This means that the other difference between A2-MO2 and A2-SO is the type of scoring method. The resulting
scores can be used to evaluate the dominance among a set of parameter vectors, which means that the non-
dominated solutions are assigned rank 1 (i.e., Pareto front) and other dominated solutions are assigned rank 2,
3, etc. Parameter sets can be sorted based on these ranks, and eventually, a Pareto dominance-based multiob-
jective optimization algorithm can be applied to find the optimal solutions. This is the basis of formulation A2-
MO, and AMALGAM is employed to solve this formulation of the calibration problem.

The binary signature scoring functions is hypothesized to make the multiobjective calibration problem of
A2-MO more tractable for algorithms like AMALGAM, because the optimization algorithm optimizes the
objectives up to the acceptability level, and not unconditionally. This hypothesis was supported by a prelim-
inary experiment where 15 continuous maximization objectives (that were assigned random numbers
between 0 and 2) were considered and 10,000 realizations of these sets of objectives were generated. Upon
nondominated sorting, almost 70% of the entire set of realizations showed to be Pareto front solutions.
However, converting the 15 objectives to 15 binary objectives (i.e., 1 if the random number was less than 1,
and 0 otherwise) reduced the number of Pareto front solutions to less than 1%. As a result, the Pareto resist-
ance issues in many-objective optimization [Farina and Amato, 2004; Fleming et al., 2005] seem to be at least
partially mitigated by converting to binary objectives. The application of such a multiobjective optimization
formulation is reported in Komuro et al. [2006] who develop an ecological process model using a similar
multiobjective assessment.

Almost in all multiobjective optimization schemes, the vector optimization problem (that is, having multiple
objectives for optimization) is converted into a scalar optimization problem (i.e., a single optimization objec-
tive) via some form of scoring (e.g., in A2-SO, the hydrological consistency is the score assigned to each
parameter set) or ranking (e.g., in A2-MO, parameter sets are sorted based on the nondomination concept
and a rank is assigned to each solution). In this way, the solutions with better ranks or scores are preferred
to other solutions. Moreover, in the Pareto-based schemes such as A2-MO, when it comes to the compari-
son among solutions with the same rank, a form of selection metric is used to select the most appropriate
solution. When the binary scoring function was initially utilized to define objectives in the optimization pro-
cess using AMALGAM, it was still observed that the standard selection metrics performed identically as ran-
dom selection, and did not effectively guide the search toward regions of high hydrological consistency.
This failure was predictable as these selection metrics have not been designed for multiobjective optimiza-
tion with many binary objectives. To overcome this issue, the consistency metric described in equation (6)
was defined as the selection metric to direct the search and thus replaced the standard selection crowding
distance selection metric in AMALGAM. Thus, whenever AMALGAM needs to conduct a tournament selec-
tion between two solutions (with the same rank), hydrological consistency of each solution is calculated
and the one with larger consistency is retained and the other one is discarded.

To use the hydrological consistency in the algorithm’s selection procedure is considered a key difference
between the proposed methodology to solve formulation A2-MO and a standard Pareto-based multiobjec-
tive optimization approach. Furthermore, it is worth noting that a key difference between the single-
objective formulation A2-SO and the Pareto-based multiobjective formulation A2-MO is that the former
explicitly optimizes the hydrological consistency, whereas the latter uses this metric in the selection phase.

In summary, A2-MO applies AMALGAM to a Pareto-based multiobjective calibration problem with 15 objec-
tives in total, i.e., 2 NSEs (continuous) and 13 signature-based objectives (binary), and furthermore, AMAL-
GAM uses the consistency metric as the selection metric to guide the search toward high-consistency
regions in the search space. It is worth noting that since A2-MO does not aggregate the objectives, it is pos-
sible to use scoring functions with acceptability thresholds for the goodness-of-fit measures (i.e., NSEs here).
Our preliminary results—not shown in the paper—demonstrated that when 13 binary scoring functions
were used for signature objectives and the two NSEs were maximization objectives, the results were supe-
rior to the case where binary scoring functions were applied to all 15. In this way, it is not necessary to
define an acceptability threshold for NSE, which might be more desirable for the modeler.

2.3.3. Summary of Calibration Formulations Tested
Table 1 lists all calibration formulations applied in this work and summarizes the approach/formulation
acronym, the precise optimization objectives, as well as the sampling strategy or optimization algorithm
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applied to solve each formulation. As will be pointed out later, two optimization algorithms are used in
these formulations; AMALGAM and DDS. To investigate the impact of the choice of optimization algorithm
on the results obtained in our numerical experiments, we will also use two other algorithms (AMALGAM-SO
and PA-DDS) in some of our case studies, and will present the results in section 4.1.

3. Application

3.1. Case Studies
Calibration of four rainfall-runoff models is considered in this study, ranging from lumped to semidistributed
with low to high number of parameters. Table 2 elaborates on these models and the study areas; in total,
seven case studies are considered in this research. The first model is HYMOD, a five parameter rainfall excess
lumped model connected with a series of linear reservoirs. Details about HYMOD parameters as well as their
prior range are provided in the literature [e.g., Boyle, 2000; Vrugt et al., 2003a]. In this study, HYMOD is applied
to two watersheds in the United States from the MOPEX experiment [Duan et al., 2006], one in Florida with
USGS station code of 02296750, and one in Georgia with the code 02202500. Two years of daily hydrologic
data are used for model calibration, and one more year as the evaluation period in both watersheds.

The second model is HBV, originally developed by Swedish Meteorological and Hydrological Institute (SMHI)
in the 1970s [Bergstr€om, 1976]. Recently, Aghakouchak and Habib [2010] developed a lumped version of HBV
based on the modified version of this model [e.g., Lindstrom, 1997] for teaching purposes, which is also used
in this study. This model is run at a daily time step with 10 parameters to be adjusted during calibration (more
information in Aghakouchak and Habib [2010]). HBV is applied to two more catchments in the MOPEX experi-
ment, one in Illinois with USGS station code of 07196500 and one in Oregon with the code of 11501000. Simi-
lar to HYMOD, 2 years of data are used as the calibration period, and 1 year as the evaluation period.

The third rainfall-runoff model used in this study is a semidistributed model called WetSpa that is a hydro-
logic model simulating water and energy transfer between soil, plants, and the atmosphere. WetSpa is
applied at an hourly time scale considering two catchments, the Hornad River catchment located in Slovakia
with 5 years of data for calibration and 1 year for evaluation, and the Baron River watershed in the United
States using 4 years of data for calibration and 1 year for evaluation. Application of WetSpa to these catch-
ments is previously studied in the literature [Bahremand et al., 2007; Liu et al., 2003; Safari et al., 2012; Shafii
and Smedt, 2009]. The first and second WetSpa case studies require eight and six parameters, respectively,
to be estimated in the calibration stage. All of these parameters are spatially constant over the entire water-
shed. The time step used to evaluate the WetSpa model output is daily.

The fourth model is SWAT2000 simulation model [Neitsch et al., 2001], referred to as SWAT in this paper.
SWAT is a spatially distributed model maintained by U.S. Department of Agriculture (USDA) and distributed
by the U.S. Environmental Protection Agency (EPA). SWAT is used for predictions of discharge in the Can-
nonsville Reservoir catchment in upstate New York, which is previously studied by Tolson [2005]. This SWAT
calibration problem (with the same set of parameters) is studied by Tolson and Shoemaker [2007]. There are
26 SWAT parameters (spatially constant over the watershed) to be estimated for this catchment [Tolson and

Table 1. Summary of Calibration Formulations Applied in This Study

Approach Formulation Acronym
(#) and Type of Objectives Considered in

Calibration Experiment

Use
Signatures in

Parameter Search? Optimization Algorithm

A1: traditional Monte Carlo
sampling

A1-MC N/A No

Optimization-based A1-BO (2) Maximize NSE of low and high flows No AMALGAM
A2: proposed in this

study
Single-objective A2-SO (1) Maximize hydrological consistency via equa-

tion (6) aggregating 15 continuous scoring
functions

Yes DDS

Biobjective A2-BO (2) Maximize avg. NSEs of low and high flows
and maximize hydrological consistency via
equation (6) aggregating 13 continuous scor-
ing functions for hydrologic signatures

Yes AMALGAM

Multiobjective A2-MO (15) Maximize 13 binary scoring functions for
hydrologic signatures and maximize NSE of
low and high flows

Yes AMALGAMModified to use equation
(6) aggregating 15 continuous
scoring functions for selection
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Shoemaker, 2007, Tables 2 and 3]. The simulation period consists of 92 days as the warm-up period, 2 years
as the calibration period, followed by 274 more days as the evaluation period. The time step used to evalu-
ate the SWAT model output is daily.

3.2. Experimental Setup
Optimization algorithms solving all formulations are run in five independent trials of 5000 simulations in all
case studies. Signature-based model calibration studies report a wide range of computational budgets,
from 1000 model simulations [Yilmaz et al., 2008] to 3 million Monte Carlo simulations [Winsemius et al.,
2009]. The number of simulations per trial in this paper (5000) was selected based on computational consid-
erations as well as some preliminary experiments to make sure that the calibrated models can satisfy at
least some signatures. Note that an identical computational budget was considered for all formulations. In
Monte Carlo experiments, a larger computational budget (i.e., increased by 1 order of magnitude to 50,000
simulations) is also considered in each trial.

Three different scenarios are considered in defining the acceptability levels. The first scenario uses the
acceptability threshold,D�i , at 20% so that ½220%; 20%� is the acceptability interval for all signature devia-
tions. Moreover, in terms of the threshold for NSE (in cases where NSE needs to be translated into a continu-
ous scoring function value, e.g., A2-SO), 0.5 is used in the conjunction with D�i 5 20% for signature
deviations. Similarly, the second and third scenarios consider acceptability threshold combinations 610%
and 0.7, and 65% and 0.7, respectively. The last scenario applies the strictest thresholds (the most difficult
calibration problem) in the consistency-based calibration problem. When the sampling process terminates,
the entire set of solutions evaluated in each trial is postprocessed to evaluate satisfaction rates of the signa-
tures and the goodness-of-fit measures in that trial (how many solutions satisfy 15/15 continuous scoring
functions, how many solutions satisfy 14/15, etc.).

4. Results

4.1. Comparison of Calibration Formulations
Figure 3 illustrates the average results of the analysis detailed in the experimental setup section for all seven
case studies presented by the model name (HBV, HYMOD, WetSpa, and SWAT) and catchment abbreviations
(IL, OR, FL, OG, HO, BA, and TO). This figure is consistent with the conceptual graph depicted in Figure 1.
The vertical axis in Figure 3 shows the average proportion of solutions satisfying at least kof 15 scoring func-
tions in five trials, and the horizontal axis is the proportion of satisfied scoring functions. The vertical axis is
logarithmic to show the difference among small proportions more clearly. For example, in the top left plot
of Figure 3 (HBV (IL) 20%), A1-BO formulation could only satisfy 87% (or 13) of the 15 scoring functions (13
signatures and 2 NSEs) at best and only 0.7% (or 35) of the 5000 sampled solutions achieved this maximum
hydrologic consistency. Note that not all solutions would satisfy the same 13 scoring functions. The left,
middle, and right columns of graphs show the results for the first (620%), second (610%), and third (65%)
set of acceptability thresholds.

Figure 3 shows that A2-MO, which maximizes the NSE objectives and maximizes the binary scoring functions
for each signature, yields the largest proportion of satisfied scoring functions by a higher number of solutions

Table 2. Summary of Case Studies Included in This Research

Case Study
Number Sim. Model (Type)

Number
of Para.

Catchment
(Location) Acronym

Calibration
Length

Evaluation
Length Refs. for More Info

1 HYMOD (lumped) 5 Florida (USA) HYMOD (FL) 2 years 1 year Boyle [2000] and
Duan et al. [2006]2 Georgia (USA) HYMOD (OG)

3 HBV (lumped) 10 Illinois (USA) HBV (IL) Aghakouchak and
Habib [2010] and
Duan et al. [2006]

4 Oregon (USA) HBV (OR)

5 WetSpa
(semidistributed)

8 Hornad (Slovakia) HO 5 years 1 year Bahremand et al.
[2007] and Shafii
and Smedt [2009]

6 6 Baron (USA) BA 4 years 1 year Safari et al. [2012]
7 SWAT

(semidistributed)
26 Cannonsville (USA) TO 2 years 274 days Tolson [2005] and

Tolson and Shoe-
maker [2007]
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Figure 3. Proportion of the entire set of solutions versus proportion of satisfied scoring functions obtained in all case studies (listed in
Table 2) in different formulations (listed in Table 1); A1-MC (long) is Monte Carlo simulations considering a large number of simulations
(50,000).
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in all case studies. The results of the approach A1 using both MC simulations (with low and high computa-
tional budget) and AMALGAM optimization algorithm are inferior to the results of the formulation A2-MO.
Moreover, it is observed in Figure 3 that both A2-SO and A2-BO perform more promising than the approach
A1 in 16 of 21 cases. Overall, this finding indicates that, in comparison to the traditional signature-based cali-
bration approach, implementation of hydrological signatures during the calibration process results in larger
number of consistent parameter sets, and a higher overall level of hydrological consistency.

Figure 4 shows the maximum number of satisfied scoring functions in five independent trials, as well as
their median, obtained in different formulations for the strictest acceptability level of 5% (note that there
are 15 scoring functions in total, 13 signature, and 2 NSEs). Each plot in Figure 4 is associated to one case
study. Figure 4 shows that A2-MO generally yields higher consistency than other formulations (highest con-
sistency in five of seven cases). In cases where the results in Figure 4 indicate another formulation is equal
or better than A2-MO (A1-BO in HYMOD (FL) and A2-BO in WetSpa (HO)), the proportion of consistent
parameter sets given by A2-MO is higher (see Figure 3). These results indicate that when satisfaction of sig-
natures is considered explicitly in the search for highly consistent parameter sets, the high-consistency
regions in the search space are explored more effectively. Figure 4 also demonstrates that the single-
objective approach (A2-SO) shows substantially higher variability of results in some cases (HYMOD-FL,
WetSpa-HO, HBV-OR, and SWAT-TO), which might be due to aggregation of all calibration objectives into a
single overall objective. This indicates that while a single A2-SO result may closely approach or equal A2-
MO results, A2-SO may be quite poor in another optimization trial. Nevertheless, as the results are based on
only five independent trials, such performance variability should be interpreted with caution.

Figure 5 provides the results of evaluating the impact of tying NSE and signature-based scoring functions
on parameters consistency for two example case studies, SWAT-TO 5% (left) and HYMOD-FL 5% (right). The
horizontal axis in Figure 5 shows different number of hydrological signatures from 1 to 13 meaning that the

Figure 4. Maximum number of satisfied signatures obtained in five independent trials of different formulations (listed in Table 1) in all
case studies (listed in Table 2) given the acceptability threshold of 5%.
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signature scores are separated from two NSE measures. The vertical axis shows the proportion of solutions
that satisfy both NSE measures; the vertical coordinates are dependent on horizontal coordinates and how
they are calculated is explained as follows. For each number of hydrological signatures on the horizontal
axis, say K, we look at the entire sample and identify the number of parameter sets that can satisfy at least K
hydrological signatures—say n1. Then we focus on these n1 solutions and find those parameter sets that
also satisfy both NSE scoring functions—say n2. The vertical coordinate of each point is calculated as n2/n1,
i.e., a proportion in the range (0,1). Note that the satisfaction of NSE scoring functions is based on the prede-
fined NSE threshold, e.g., 0.7 in case of 5% acceptability threshold. For instance, in the left plot and looking
at the results of A1-BO, the first point on the line indicates that 68% of the solutions that satisfy at least one
signature will satisfy both NSE scoring functions as well.

Figure 5 (left) shows a case study where increasing the number of hydrological signatures in approach A1
does not correspond to an increase in the proportion of solutions with good NSE values. Figure 5 (right)
demonstrates a case study where approach A1 yields increasing proportions. It was observed that approach
A1 resulted in variations similar to the left plot in eight examples out of 21, i.e., seven case studies and three
acceptability thresholds. In contrast, the formulations A2-SO, A2-BO, and A2-MO demonstrate near-
monotonically increasing proportions in all case studies. The A2 formulations thus effectively tie NSE and
hydrological signatures during calibration so that both improve together. These results indicate that the tra-
ditional approach of optimizing multiple goodness-of-fit measures with a multiobjective algorithm followed
by postprocessing can result in a proportion of parameter sets that may appear consistent based on hydro-
logic signatures but show relatively poor performance with respect to goodness-of-fit measures.

Figure 6 illustrates the number of satisfied scoring functions on the vertical axis versus average NSE of low
and high flows on the horizontal axis obtained in only one trial of the HBV case study in the Illinois catch-
ment (IL). The plots correspond to 620% (left), 610% (middle), and 65% (right) acceptability thresholds.
For all formulations, first the quantities plotted in Figure 6 are calculated for all 5000 samples, and then, the
solutions are sorted based on the nondomination sorting scheme with respect to these two quantities. To
make the figure visually presentable, Figure 6 shows only the Pareto front solutions among 5000 simula-
tions, rather than the entire set of solutions. To show the improvements in the results of A2-MO considering
a large computational budget, Figure 6 also demonstrates the Pareto front solutions obtained after 50,000
simulations in A2-MO (marked as A2-MO (long) in Figure 6).

Figure 6 demonstrates that NSE values obtained in formulation A1-BO (which is solely focused on optimiz-
ing the NSE values) are just slightly improved over the maximum NSE values of other formulations. In other
words, the inclusion of signatures into the calibration objectives does not preclude the search algorithm
from returning nearly optimal goodness-of-fit measures. In contrast, A1-BO cannot find overall consistency
values as high as that of A2-MO. Figure 6 also shows that increasing the computational budget in A2-MO
makes it possible to get more hydrologically consistent results with relatively higher NSE values. Overall,
Figure 6 demonstrates that the application of formulation A2-MO generates a new part of the trade-off
between goodness-of-fit measures and the consistency metric that the traditional formulation A1-BO does
not generate.

Figure 5. Proportion of solutions satisfying NSE-based measures versus number of satisfied signature-based scoring functions from 1 to 13
(indicating increase of hydrological consistency) in four formulations (listed in Table 1). (left) SWAT-TO 5% case study and (right) HYMOD-
FL 5% case study.
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4.2. Effect of the Choice of Optimization Algorithms
The results illustrated previously are based on application of one set of optimization algorithms in different
formulations. To investigate the impact of the choice of optimization algorithms on our findings, other opti-
mization algorithms are also applied to a few of case studies. Among the new experiments is the applica-
tion of AMALGAM-SO [Vrugt et al., 2009a] to calibration of WetSpa in Hornad catchment (HO) for the A2-SO
formulation, and PADDS [Asadzadeh and Tolson, 2013] to calibration of HBV in the Illinois catchment (IL) for
the A2-BO and A2-MO formulations. These algorithms are both among recently developed efficient algo-
rithms, and we chose them because we were comfortable working with them. Any other single, bi, and mul-
tiobjective optimization algorithms could be used in this part. Figure 7 illustrates the proportion of satisfied
signatures versus the average proportion of samples in five trials. Figure 7 (top) shows the results of the
WetSpa case study in A2-SO. Figure 7 (bottom) demonstrates the results of the HBV case study in A2-BO
and A2-MO.

Figure 7 indicates that, in the WetSpa case study, the application of AMALGAM-SO does not improve over
DDS results and the A2-MO formulation is still clearly preferred. Moreover, in the HBV case study, in spite of
some differences between the performance of PADDS and AMALGAM both in A2-BO and A2-MO, A2-MO
still shows to be the most promising approach among the formulations considered in this study using both
algorithms. For example, in four of six cases using PADDS, A2-MO yields better performance for any number
of signatures satisfied. In the other two cases when using PADDS (HBV 10% and HBV 5%), A2-MO yields the
best performance at the highest proportion of satisfied signatures. Hence, since the choice of the algorithm
does not affect the resulting ranking of the formulations, the overall conclusions do not change, and the
full multiobjective formulation (A2-MO) remains as the most promising formulation with respect to hydro-
logical consistency. It should be pointed out that a full analysis of the sensitivity of the results to the type of
optimization algorithm was not the goal of these experiments. Rather, we intended to investigate whether
the best formulation would be impacted by a change in the type of optimization algorithm, which in fact
was not the case.

5. Concluding Remarks

This study develops a multiobjective calibration methodology where both goodness-of-fit measures such as
NSE and hydrological signature-based measures are implemented as explicit objectives in the optimization
formulation. First, a scoring method is developed to transform any hydrological signature to a calibration
objective on the basis of an acceptability threshold for the signature. These scores are aggregated to an
overall metric that quantifies the hydrological consistency of each parameter set. The proposed scores and
the consistency metric are subsequently implemented in various signature-based calibration frameworks
where different formulations are provided and multiple optimization algorithms are applied to take samples
from parameter space and adapt the sampling according to hydrologic signature values. The formulations
include (i) single-objective optimization that maximizes the hydrological consistency metric; (ii) biobjective

Figure 6. Number of satisfied scoring functions versus average NSE for low and high flows obtained from different formulations (listed in Table 1) in the HBV case study applied to the
catchment in Illinois (IL) considering three acceptability thresholds. A2-MO (long) is the same as A2-MO, but with the computational budget of 50,000 simulations.
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optimization where the first and second objectives are aggregated goodness-of-fit measures and the hydro-
logical consistency metric, respectively; and (iii) Pareto-based multiobjective optimization implementing
individual objectives for each hydrologic signature and each goodness-of-fit measure. In the last formula-
tion, due to particular issues with many-objective optimization, the signatures are scored 1/0 (satisfied/non-
satisfied) and the hydrological consistency is used as the multiobjective algorithm selection metric.

These proposed formulations are compared with the traditional signature-based model evaluation
approaches that either are based on Monte Carlo simulations or postprocess the calibration results using
hydrological signatures. The comparison among calibration formulations is on the basis of the hydrological
consistency of the parameter sets quantified in terms of our proposed consistency metric. Proposed calibra-
tion formulations as well as the traditional approach are tested in seven case studies using a set of optimiza-
tion algorithms.

The results show that the full multiobjective Pareto-based calibration approach yields the highest level of
hydrological consistency in all case studies in comparison to other optimization schemes, Monte Carlo sam-
pling, and the traditional calibration approaches that only optimize residual-based measures. In other
words, consideration of individual hydrological signatures throughout the calibration process enhances the
chance of finding more hydrologically consistent parameter sets. Moreover, this formulation results in a
larger number of consistent parameter sets returned by the optimization algorithm. Superiority of this for-
mulation in comparison to traditional formulations is more significant in calibration problems with stricter
levels of acceptability (i.e., 5%). This finding highlights the advantage of multiobjective optimization con-
cepts, especially Pareto dominance, in signature-based calibration of hydrologic models where algorithms
respond directly to the quality of hydrologic signatures.

This study also evaluates the effect of the choice of optimization algorithm on the findings by using differ-
ent single and multiobjective algorithms to some of the case studies. The results demonstrate that, despite

Figure 7. Proportion of the entire set of solutions versus proportion of satisfied scoring functions obtained in the (top) HBV and (bottom) WetSpa case studies in the formulations listed
in Table 1. Results of A1-BO, A2-SO, A2-BO, and A2-MO are the same as Figure 3 while new optimization algorithms used in A2-SO-AMALGAM-SO and A2-BO-PADDS.
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slight changes in the outcome of applying different algorithms, the final ranking of the formulations against
achieved hydrological consistency level remains the same when an alternative algorithm is selected. There-
fore, the findings depend more on the formulation as opposed to the optimization algorithm.

Recently, Vrugt and Sadegh [2013] developed a signature-based model calibration using a sequential Monte
Carlo sampling based on ABC, applied to a linear regression and a lumped conceptual modeling. In the
present paper, the ABC approach is not implemented, because the ABC concept is very recent to hydrology
and is only demonstrated on a few lumped modeling (models with very small computational burden) case
studies. The traditional methods implemented in this research are more established, as they have been
applied in multiple research studies. Given the difference between the proposed optimization-based meth-
odology and the Monte Carlo-based ABC in Vrugt and Sadegh [2013], future work should compare these
two methods with respect to the hydrological consistency as well as the computational expense.

Since signature-based model calibration constrains the model output from the hydrological perspective, it
provides the modeler with insight into the performance of different modules in the hydrologic simulation
model. Therefore, the components of the model that are at fault may be identified, and steps can be taken
to improve these components accordingly. When many signatures are considered (similar to this study), the
modeler will have more appropriate control on different elements of the model structure. A possible
research avenue for future studies can be to perform further analysis of the calibration results to identify
model structural adequacy.

Appendix A: Description of Hydrological Signatures

Table A1 in this appendix presents the mathematical formulation of 13 hydrological signatures used in this
study. These signatures can be calculated for the observed or simulated time series of discharge.

Table A1. Hydrological Signatures and the Corresponding Measures Used in This Study; These Signature Measures Are Calculated Using N Time Steps in the Time Series of Flows Q

Hydrological
Signature Signature Description

Signature Calculation Based on Time Series of Flow Data (Q) (Q
Can Either be Simulated of Observed)

Water balance (1) Overall runoff ratio considering Q XN

t51

Qt=
XN

t51

Pt , where Pt is precipitation in time step t

(2) Overall runoff ratio considering ln ðQÞ XN

t51

ln ðQtÞ=
XN

t51

Pt , where Pt is precipitation in time step t

Flow duration
curve (FDC)

(3) FDC midsegment slope log ðQm1Þ2log ðQm2Þ, where m1 and m2 are the lowest and high-
est flow exceedance probabilities within the midsegment of
FDC (0.2 and 0.7 in this research)

(4) FDC high-segment volume XH

h51

Qh , where h 5 1,2,. . ., H are flow indices located within the

high-flow segment (exceedance probabilities lower than 0.02);
H is the index of the maximum flow

(5) FDC low-segment volume
21:

XL

l51

ðlog ðQlÞ2log ðQLÞ�, where l51; 2; :::; L are flow indices

located within the low-flow segment (0.7–1.0 flow exceedance
probabilities); L is the index of the minimum flow

Discharge statistics (6) Mean discharge XN

t51

Qt=N

(7) Discharge variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t51

Qt2Q
� �2

=ðN21Þ
s

, where Q is the average of the entire flow

data Q
(8) Median discharge MðQÞ, where MðQÞis the median of the entire flow data Q
(9) Peak discharge PðQÞ, where PðQÞis the peak of the entire flow data Q
(10) Lag-1 autocorr. Coefficient XN21

t51

ðQt2QÞðQt112QÞ=
XN

t51

ðQt2QÞ2

(11) Mean log-transformed discharge XN

t51

ln ðQtÞ=N

(12) Variance of log-transformed Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t51

ln ðQtÞ2qð Þ2=ðN21Þ
s

, where q is the average of ln ðQÞ

Monthly flow (13) Maximum of monthly flow MaxfFðiÞg; i51; 2; :::; 12, where FðiÞis the average flow in month i
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