2,783 research outputs found

    Soft interactions in Herwig++

    Get PDF
    We describe the recent developments to extend the multi-parton interaction model of underlying events in Herwig++ into the soft, non-perturbative, regime. This allows the program to describe also minimum bias collisions in which there is no hard interaction, for the first time. It is publicly available from versions 2.3 onwards and describes the Tevatron underlying event and minimum bias data. The extrapolations to the LHC nevertheless suffer considerable ambiguity, as we discuss.Comment: 10 pages, talk given by Manuel Bahr at First International Workshop on Multiple Partonic Interactions at the LHC, "MPI@LHC'08", Perugia, Italy, October 27-31 200

    A model of non-perturbative gluon emission in an initial state parton shower

    Get PDF
    We consider a model of transverse momentum production in which non-perturbative smearing takes place throughout the perturbative evolution, by a simple modification to an initial state parton shower algorithm. Using this as the important non-perturbative ingredient, we get a good fit to data over a wide range of energy. Combining it with the non-perturbative masses and cutoffs that are a feature of conventional parton showers also leads to a reasonable fit. We discuss the extrapolation to the LHC.Comment: 14 pages, 6 figures; version accepted by JHE

    A prospective analysis of the injury incidence of young male professional football players on artificial turf

    Get PDF
    Background: The effects of synthetic surfaces on the risk of injuries is still debated in literature and the majority of published data seems to be contradictory. For such reasons the understanding of injury incidence on such surfaces, especially in youth sport, is fundamental for injury prevention. Objectives: The aim of this study was to prospectively report the epidemiology of injuries in young football players, playing on artificial turfs, during a one sports season. Patients and Methods: 80 young male football players (age 16.1 ± 3.7 years; height 174 ± 6.6 cm; weight 64.2 ± 6.3 kg) were enrolled in a prospective cohort study. The participants were then divided in two groups; the first included players age ranging from 17 to 19 (OP) whereas the second included players age ranging from 13 to 16 (YP). Injury incidence was recorded prospectively, according to the consensus statement for soccer. Results: A total of 107 injuries (35 from the OP and 72 from the YP) were recorded during an exposure time of 83.760 hours (incidence 1.28/1000 per player hours); 22 during matches (incidence 2.84/1000 per player hours, 20.5%) and 85 during training (incidence 1.15/1000 per player hours, 79.5%). Thigh and groin were the most common injury locations (33.6% and 21.5%, respectively) while muscle injuries such as contractures and strains were the most common injury typologies (68.23%). No statistical differences between groups were displayed, except for the rate of severe injuries during matches, with the OP displaying slightly higher rates compared to the YP. Severe injuries accounted for 10.28% of the total injuries reported. The average time lost due to injuries was 14 days. Re-injuries accounted for 4.67% of all injuries sustained during the season. Conclusions: In professional youth soccer injury rates are reasonably low. Muscle injuries are the most common type of injuries while groin and thigh the most common locations. Artificial turf pitches don’t seem to contribute to injury incidence in young football players

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud

    Multiple Parton Interactions, top--antitop and W+4j production at the LHC

    Get PDF
    The expected rate for Multiple Parton Interactions (MPI) at the LHC is large. This requires an estimate of their impact on all measurement foreseen at the LHC while opening unprecendented opportunities for a detailed study of these phenomena. In this paper we examine the MPI background to top-antitop production, in the semileptonic channel, in the early phase of data taking when the full power of bb--tagging will not be available. The MPI background turns out to be small but non negligible, of the order of 20% of the background provided by W+4j production through a Single Parton Interaction. We then analyze the possibility of studying Multiple Parton Interactions in the W+4j channel, a far more complicated setting than the reactions examined at lower energies. The MPI contribution turns out to be dominated by final states with two energetic jets which balance in transverse momentum, and it appears possible, thanks to the good angular resolution of ATLAS and CMS, to separate the Multiple Parton Interactions contribution from Single Parton Interaction processes. The large cross section for two jet production suggests that also Triple Parton Interactions (TPI) could provide a non negligible contribution. Our preliminary analysis suggests that it might be indeed possible to investigate TPI at the LHC.Comment: Typos fixed. Published in JHE

    Quantum mechanics on a circle: Husimi phase space distributions and semiclassical coherent state propagators

    Get PDF
    We discuss some basic tools for an analysis of one-dimensionalquantum systems defined on a cyclic coordinate space. The basic features of the generalized coherent states, the complexifier coherent states are reviewed. These states are then used to define the corresponding (quasi)densities in phase space. The properties of these generalized Husimi distributions are discussed, in particular their zeros.Furthermore, the use of the complexifier coherent states for a semiclassical analysis is demonstrated by deriving a semiclassical coherent state propagator in phase space.Comment: 29 page

    Extrapolation of Multiplicity distribution in p+p(\bar(p)) collisions to LHC energies

    Full text link
    The multiplicity (N_ch) and pseudorapidity distribution (dN_ch/d\eta) of primary charged particles in p+p collisions at Large Hadron Collider (LHC) energies of \sqrt(s) = 10 and 14 TeV are obtained from extrapolation of existing measurements at lower \sqrt(s). These distributions are then compared to calculations from PYTHIA and PHOJET models. The existing \sqrt(s) measurements are unable to distinguish between a logarithmic and power law dependence of the average charged particle multiplicity () on \sqrt(s), and their extrapolation to energies accessible at LHC give very different values. Assuming a reasonably good description of inclusive charged particle multiplicity distributions by Negative Binomial Distributions (NBD) at lower \sqrt(s) to hold for LHC energies, we observe that the logarithmic \sqrt(s) dependence of are favored by the models at midrapidity. The dN_ch/d\eta versus \eta for the existing measurements are found to be reasonably well described by a function with three parameters which accounts for the basic features of the distribution, height at midrapidity, central rapidity plateau and the higher rapidity fall-off. Extrapolation of these parameters as a function of \sqrt(s) is used to predict the pseudorapidity distributions of charged particles at LHC energies. dN_ch/d\eta calculations from PYTHIA and PHOJET models are found to be lower compared to those obtained from the extrapolated dN_ch/d\eta versus \eta distributions for a broad \eta range.Comment: 11 pages and 13 figures. Substantially revised and accepted for publication in Journal of Physics

    Polynomials, Riemann surfaces, and reconstructing missing-energy events

    Get PDF
    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.Comment: 28 pages, 6 figures; version accepted for publication, with discussion of Higgs to tau tau deca
    corecore