315 research outputs found

    Light modulation in phase change disordered metamaterial - A smart cermet concept

    Get PDF
    Cermet coatings are popular solar selective absorbers as they allow capturing most of the solar energy while minimising radiative losses. Embedded metallic nanoparticles in dielectric matrices promote multiple internal reflection of light and provide an overall low emissivity. VO2 in the metamaterial state is regarded in this study as a responsive mixed phase comprising metallic rutile VO2 inclusions in semiconducting monoclinic VO2 phase mimicking cermet. The smart cermet responds to thermal stimuli by modulating the size of the metallic inclusions and thereby enabling the manipulation of their interaction with light. The highly reliable and reproducible response of the smart cermet corroborates with the observed ramp reversal memory effect in VO2. We demonstrate a thermally controlled 85% emissivity switch taking advantage of the narrow hysteresis and tuning abilities of the disordered metamaterial

    Tunable thermochromic properties of V 2 O 5 coatings

    Get PDF
    Thermochromic Di vanadium pentaoxide (V2O5) coatings displaying a variety of colours were synthesised. Tuning of thermochromic behaviour was achieved via a controlled oxidative annealing under ambient air of the as-grown VOx films. Adjusting the oxygen deficiency in V2O5, allows tuning the colour of the films and as a consequence its thermochromic behaviour. Non oxygen deficient V2O5 did not feature any measurable thermochromis

    Vanadium Oxide as a Key Constituent in Reconfigurable Metamaterials

    Get PDF
    Tunable materials are paving the way towards improved functionality of metamaterials. Vanadium oxide (VO2) with its prototypical near-room-temperature transition between phases featuring greatly contrasting electrical and optical behavior is an appealing candidate as an active component in metamaterials. However, it is seldom known that VO2 in itself has metamaterial characteristics. VO2 under certain temperature conditions demonstrates a phase coexistence enabling highly tunable electrical and optical properties. In this chapter, we describe how VO2 in its hysteretic region behaves as a smart responsive Metasurface with cutting edge applications

    Visible thermochromism in vanadium pentoxide coatings

    Get PDF
    Although di-vanadium pentoxide (V2O5) has been a candidate of extensive research for over half a century, its intrinsic thermochromism has not been reported so far. Films of V2O5 grown on silicon, glass, and metal substrates by metal organic chemical vapor deposition in this study exhibit a thermally induced perceptible color change from bright yellow to deep orange. Temperature-dependent UV− vis spectroscopy and X-ray diffraction allow the correlation between the reversible continuous red shift of the absorption and the anisotropic thermal expansion along the (001) direction, that is, perpendicular to the sheets constituting the layered structure. Furthermore, the possibility of tuning the thermochromic behavior was demonstrated via a chemical doping with chromiu

    PLoS Genet.

    No full text
    Our understanding of basic evolutionary processes in bacteria is still very limited. For example, multiple recent dating estimates are based on a universal inter-species molecular clock rate, but that rate was calibrated using estimates of geological dates that are no longer accepted. We therefore estimated the short-term rates of mutation and recombination in Helicobacter pylori by sequencing an average of 39,300 bp in 78 gene fragments from 97 isolates. These isolates included 34 pairs of sequential samples, which were sampled at intervals of 0.25 to 10.2 years. They also included single isolates from 29 individuals (average age: 45 years) from 10 families. The accumulation of sequence diversity increased with time of separation in a clock-like manner in the sequential isolates. We used Approximate Bayesian Computation to estimate the rates of mutation, recombination, mean length of recombination tracts, and average diversity in those tracts. The estimates indicate that the short-term mutation rate is 1.4x10(-6) (serial isolates) to 4.5x10(-6) (family isolates) per nucleotide per year and that three times as many substitutions are introduced by recombination as by mutation. The long-term mutation rate over millennia is 5-17-fold lower, partly due to the removal of non-synonymous mutations due to purifying selection. Comparisons with the recent literature show that short-term mutation rates vary dramatically in different bacterial species and can span a range of several orders of magnitude

    Electrical Switching in Semiconductor-Metal Self-Assembled VO2 Disordered Metamaterial Coatings

    Get PDF
    As a strongly correlated metal oxide, VO2 inspires several highly technological applications. The challenging reliable wafer-scale synthesis of high quality polycrystalline VO2 coatings is demonstrated on 4” Si taking advantage of the oxidative sintering of chemically vapor deposited VO2 films. This approach results in films with a semiconductor-metal transition (SMT) quality approaching that of the epitaxial counterpart. SMT occurs with an abrupt electrical resistivity change exceeding three orders of magnitude with a narrow hysteresis width. Spatially resolved infrared and Raman analyses evidence the self-assembly of VO2 disordered metamaterial, compresing monoclinic (M1 and M2) and rutile (R)domains, at the transition temperature region. The M2 mediation of the M1-R transition is spatially confined and related to the localized strain-stabilization of the M2 phase. The presence of the M2 phase is supposed to play a role as a minor semiconducting phase far above the SMT temperature. In terms of application, we show that the VO2 disordered self-assembly of M and R phases is highly stable and can be thermally triggered with high precision using short heating or cooling pulses with adjusted strengths. Such a control enables an accurate and tunable thermal control of the electrical switching

    Synthesis of vanadium oxide films with controlled morphologies: Impact on the metal–insulator transition behaviour

    Get PDF
    Precise control over the growth of VO2 films with different morphologies is achieved by varying the deposition parameters in the DLI-MOCVD process such as temperature, pressure, concentration of precursor and time of deposition. In this study, thin films of VO2 with wide range of morphologies having Metal to Insulator Transition (MIT) temperature of (τc) ∼ 52 °C were deposited. Adjusting the process parameters has allowed the growth of highly porous nanocrystalline films and dense microcrystalline films with controlled crystallite size up to several hundred nanometres. Vanadium (V) oxy tri-isopropoxide was used in this study as a single source precursor. Porous films lead to a diffuse change in resistivity across the transition temperature while the crystalline films have sharp and high resistivity drop (Δρ). This enabled a qualitative study of the MIT behaviour with respect to the microstructure of the films and correlates the effect of deposition conditions to the obtained morphologies. Fine control over the morphology without additional doping or post deposition process provides the ability to tailor VO2 thin films for their respective applications. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction were used to characterize the microstructure of the films while electrical resistivity measurements were carried out to observe the MIT behaviour of the films

    Data on quantification of signaling pathways activated by KIT and PDGFRA mutants.

    Get PDF
    peer reviewedThe present data are related to the article entitled "Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling" (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016) [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST) were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells). Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf). We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so

    Hierarchical regulation of the NikR-mediated nickel response in Helicobacter pylori

    Get PDF
    Nickel is an essential metal for Helicobacter pylori, as it is the co-factor of two enzymes crucial for colonization, urease and hydrogenase. Nickel is taken up by specific transporters and its intracellular homeostasis depends on nickel-binding proteins to avoid toxicity. Nickel trafficking is controlled by the Ni(II)-dependent transcriptional regulator NikR. In contrast to other NikR proteins, NikR from H. pylori is a pleiotropic regulator that depending on the target gene acts as an activator or a repressor. We systematically quantified the in vivo Ni2+-NikR response of 11 direct NikR targets that encode functions related to nickel metabolism, four activated and seven repressed genes. Among these, four targets were characterized for the first time (hpn, hpn-like, hydA and hspA) and NikR binding to their promoter regions was demonstrated by electrophoretic mobility shift assays. We found that NikR-dependent repression was generally set up at higher nickel concentrations than activation. Kinetics of the regulation revealed a gradual and temporal NikR-mediated response to nickel where activation of nickel-protection mechanisms takes place before repression of nickel uptake. Our in vivo study demonstrates, for the first time, a chronological hierarchy in the NikR-dependent transcriptional response to nickel that is coherent with the control of nickel homeostasis in H. pylori

    Autoregulation of Sinorhizobium meliloti exoR gene expression

    Get PDF
    The successful nitrogen-fixing symbiosis between the Gram-negative soil bacterium Sinorhizobium meliloti and its leguminous plant host alfalfa (Medicago sativa) requires the bacterial exopolysaccharide succinoglycan. Succinoglycan and flagellum production, along with the ability to metabolize more than 20 different carbon sources and control the expression of a large number of S. meliloti genes, is regulated by the ExoR–ExoS/ChvI signalling pathway. The ExoR protein interacts with and suppresses the sensing activities of ExoS, the membrane-bound sensor of the ExoS/ChvI two-component regulatory system. Here we show that exoR expression is clearly upregulated in the absence of any functional ExoR protein. This upregulation was suppressed by the presence of the wild-type ExoR protein but not by a mutated ExoR protein lacking signal peptide. The levels of exoR expression could be directly modified in real time by changing the levels of total ExoR protein. The expression of exoR was also upregulated by the constitutively active sensor mutation exoS96, and blocked by two single mutations, exoS* and exoSsupA, in the ExoS sensing domain. Presence of the wild-type ExoS protein further elevated the levels of exoR expression in the absence of functional ExoR protein, and reversed the effects of exoS96, exoS* and exoSsupA mutations. Altogether, these data suggest that ExoR protein autoregulates exoR expression through the ExoS/ChvI system, allowing S. meliloti cells to maintain the levels of exoR expression based on the amount of total ExoR protein
    corecore