2,547 research outputs found

    Direct determination of the solar neutrino fluxes from solar neutrino data

    Get PDF
    We determine the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian approach we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. This is done by means of a Markov Chain Monte Carlo employing the Metropolis-Hastings algorithm. We also describe how these results can be applied to test the predictions of the Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with good statistical agreement.Comment: 24 pages, 1 table, 7 figures. Acknowledgments correcte

    Electron-neutrino survival probability from solar-neutrino data

    Get PDF
    With SNO data on electron-neutrino flux from the sun, it is possible to derive the νe\nu_e survival probability Pee(E)P_{ee}(E) from existing experimental data of Super-Kamiokande, gallium experiments and Homestake. The combined data of SNO and Super-Kamiokande provide boron νe\nu_e flux and the total flux of all active boron neutrinos, giving thus Pee(E)P_{ee}(E) for boron neutrinos. The Homestake detector, after subtraction of the signal from boron neutrinos, gives the flux of Be+CNO neutrinos, and PeeP_{ee} for the corresponding energy interval, if the produced flux is taken from the Standard Solar Model (SSM). Gallium detectors, GALLEX, SAGE and GNO, detect additionally pp-neutrinos. The pp-flux can be calculated subtracting from the gallium signal the rate due to boron, beryllium and CNO neutrinos. The ratio of the measured pppp-neutrino flux to that predicted by the SSM gives the survival probability for pppp-neutrinos. Comparison with theoretical survival probabilities shows that the best (among known models) fit is given by LMA and LOW solutions.Comment: 9 pages, 3 figures, references adde

    Investigation of galactic alignment in LSC galaxy clusters

    Get PDF
    We investigate the galactic axes orientations within 18 selected clusters, sub-structures of the Local Supercluster. For every cluster we map the parameter \Delta_{11} (Flin & God{\l}owski 1986) describing the galactic axes alignment with respect to a cluster pole changing along the entire celestial sphere. The resulting maps are analyzed for correlations of its maxima with directions from the cluster centre to 1.) the derived `physical' cluster poles, 2.) the Local Supercluster centre, 3.) the Virgo A centre and 4.) the Earth, i.e. along the line of sight (LOS). The strong maxima - with one exception - exist only for non-spiral (NS) sub-samples, with the maximum well correlated with the LOS direction. For clusters with a clearly defined weak maximum the conclusion generally does not change. For the spiral (S) sub-samples the maps are usually at the random noise level. In these cases a weaker, but still existent correlation with the LOS is observed and no other evident correlations are noted. We conclude that the strong systematic effect, generated by the process of galactic axis de-projection from its optical image, is present in the catalogue data. With the use of a simple model for the systematic effect we are able to reproduce the main characteristic features of the maps for NS galaxies. We note, however, a few clusters showing significant differences with respect to this model.Comment: LaTeX (21 pages, 10 gif figures); MNRAS, accepte

    How many sigmas is the solar neutrino effect?

    Get PDF
    The minimal standard electroweak model can be tested by allowing all the solar neutrino fluxes, with undistorted energy spectra, to be free parameters in fitting the measured solar neutrino event rates, subject only to the condition that the total observed luminosity of the sun is produced by nuclear fusion. The rates of the five experiments prior to SNO (chlorine, Kamiokande, SAGE, GALLEX, Super-Kamiokande) cannot be fit by an arbitrary choice of undistorted neutrino fluxes at the level of 2.5 sigma (formally 99% C.L.). Considering just SNO and Super-Kamiokande, the discrepancy is at the 3.3 sigma level(10^{-3} C.L.). If all six experiments are fit simultaneously, the formal discrepancy increases to 4 sigma (7*10^{-5} C.L.). If the relative scaling in temperature of the nuclear reactions that produce 7Be and 8B neutrinos is taken into account, the formal discrepancy is at the 7.4 sigma level.Comment: 1 figure; related information at http://www.sns.ias.edu/~jn

    Solar Neutrinos Before and After KamLAND

    Get PDF
    We use the recently reported KamLAND measurements on oscillations of reactor anti-neutrinos, together with the data of previously reported solar neutrino experiments, to show that: (1) the total 8B neutrino flux emitted by the Sun is 1.00(1.0 \pm 0.06) of the standard solar model (BP00) predicted flux, (2) the KamLAND measurements reduce the area of the globally allowed oscillation regions that must be explored in model fitting by six orders of magnitude in the Delta m^2-tan^2 theta plane, (3) LMA is now the unique oscillation solution to a CL of 4.7sigma, (4) maximal mixing is disfavored at 3.1 sigma, (5) active-sterile admixtures are constrained to sin^2 eta<0.13 at 1 sigma, (6) the observed ^8B flux that is in the form of sterile neutrinos is 0.00^{+0.09}_{-0.00} (1 sigma), of the standard solar model (BP00) predicted flux, and (7) non-standard solar models that were invented to completely avoid solar neutrino oscillations are excluded by KamLAND plus solar at 7.9 sigma . We also refine quantitative predictions for future 7Be and p-p solar neutrino experiments.Comment: Published version, includes editorial improvement

    Lithium Experiment on Solar Neutrinos to Weight the CNO Cycle

    Full text link
    The measurement of the flux of beryllium neutrinos with the accuracy of about 10% and CNO neutrinos with the accuracy 30% will enable to find the flux of pp-neutrinos in the source with the accuracy better than 1% using the luminosity constraint. The future experiments on \nu e- scattering will enable to measure with very good accuracy the flux of beryllium and pp-neutrinos on the Earth. The ratio of the flux of pp-neutrinos on the Earth and in the source will enable to find with very good accuracy a mixing angle theta solar. Lithium detector has high sensitivity to CNO neutrinos and can find the contribution of CNO cycle to the energy generated in the Sun. This will be a stringent test of the theory of stellar evolution and combined with other experiments will provide a precise determination of the flux of pp-neutrinos in the source and a mixing angle theta solar. The work on the development of the technology of lithium experiment is now in progress.Comment: Minor corrections, one reference added, 11 pages, 2 figures, talk given at NANP 2003, Dubna, Russia, June 200

    Bounds on neutrino magnetic moment tensor from solar neutrinos

    Full text link
    Solar neutrinos with non-zero magnetic moments will contribute to the electron scattering rates in the Super-Kamiokande experiment. The magnetic moment scattering events in Super-K can be accommodated in the standard VO or MSW solutions by a change of the parameter space of mass square difference and mixing angle-but the shifted neutrino parameters obtained from Super-K will (for some values of neutrino magnetic moments) become incompatible with the fits from SNO, Gallium and Chlorine experiments. We compute the upper bounds on the Dirac and Majorana magnetic moments of solar neutrinos by simultaneously fitting all the observed solar neutrino rates. The bounds the magnetic moment matrix elements are of the order of 10^{-10} Bohr magnetron.Comment: 9 pages latex file with 6 figures; References added, typos corrected, matches version to appear in Phys Rev

    The value of the fine structure constant over cosmological times

    Full text link
    The optical spectra of objects classified as QSOs in the SDSS DR6 are analyzed with the aim of determining the value of the fine structure constant in the past and then check for possible changes in the constant over cosmological timescales. The analysis is done by measuring the position of the fine structure lines of the [OIII] doublet (4959 and 5008) in QSO nebular emission. From the sample of QSOs at redshifts z < 0.8 a subsample was selected on the basis of the amplitude and width of the [OIII] lines. Two different method were used to determine the position of the lines of the [OIII] doublet, both giving similar results. Using a clean sample containing 1568 of such spectra, a value of Delta alpha /alpha=(+2.4 +-2.5) x 10^{-5} (in the range of redshifts 0-0.8) was determined. The use of a larger number of spectra allows a factor ~5 improvement on previous constraints based on the same method. On the whole, we find no evidence of changes in alpha on such cosmological timescales. The mean variation compatible with our results is 1/ Delta alpha/alpha=(+0.7 +- 0.7) x 10^{-14} yr^{-1}. The analysis was extended to the [NeIII] and [SII] doublets, although their usefulness is limited due to the fact that all these doublets in QSOs tend to be fainter than [OIII], and that some of them are affected by systematics.Comment: 22 pages, 10 figures. Accepted for publication in Astrophysical Journa

    Constraints on decay plus oscillation solutions of the solar neutrino problem

    Get PDF
    We examine the constraints on non-radiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. Decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2\nu_2, (\tau_2/m_2) > 22.7 (\srm/\MeV) for the MSW solution of the solar neutrino problem and (\tau_2/m_2) > 27.8 (\srm/\MeV) for the VO solution (at 99% C.L.).Comment: 8 pages latex file with 4 figure

    Vacuum oscillations and excess of high energy solar neutrino events observed in Superkamiokande

    Get PDF
    The excess of solar-neutrino events above 13 MeV that has been recently observed by Superkamiokande can be explained by the vacuum oscillation solution to the Solar Neutrino Problem (SNP). If the boron neutrino flux is 20% smaller than the standard solar model (SSM) prediction and the chlorine signal is assumed 30% (or 3.4 sigmas) higher than the measured one, there exists a vacuum oscillation solution to SNP that reproduces both the observed spectrum of the recoil electrons, including the high energy distortion, and the other measured neutrino rates. The most distinct signature of this solution is a semi-annual seasonal variation of the Be7 neutrino flux with maximal amplitude. While the temporal series of the GALLEX and Homestake signals suggest that such a seasonal variation could be present, future detectors (BOREXINO, LENS and probably GNO) will be able to test it.Comment: ReVTeX, 8 pages, 7 figures included using psfig.sty ; references and notes adde
    • …
    corecore