7 research outputs found

    StAR Enhances Transcription of Genes Encoding the Mitochondrial Proteases Involved in Its Own Degradation

    No full text
    Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2: SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR

    Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR)

    No full text
    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peni-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. (C) 2015 Elsevier Ireland Ltd. All rights reserved

    Complex Role of the Mitochondrial Targeting Signal in the Function of Steroidogenic Acute Regulatory Protein Revealed by Bacterial Artificial Chromosome Transgenesis in Vivo

    No full text
    The steroidogenic acute regulatory protein (StAR) stimulates the regulated production of steroid hormones in the adrenal cortex and gonads by facilitating the delivery of cholesterol to the inner mitochondrial membrane. To explore key aspects of StAR function within bona fide steroidogenic cells, we used a transgenic mouse model to explore the function of StAR proteins in vivo. We first validated this transgenic bacterial artificial chromosome reconstitution system by targeting enhanced green fluorescent protein to steroidogenic cells of the adrenal cortex and gonads. Thereafter, we targeted expression of either wild-type StAR (WT-StAR) or a mutated StAR protein lacking the mitochondrial targeting signal (N47-StAR). In the context of mice homozygous for a StAR knockout allele (StAR−/−), all StAR activity derived from the StAR transgenes, allowing us to examine the function of the proteins that they encode. The WT-StAR transgene consistently restored viability and steroidogenic function to StAR−/− mice. Although the N47-StAR protein was reportedly active in transfected COS cells and mitochondrial reconstitution experiments, the N47-StAR transgene rescued viability in only 40% of StAR−/− mice. Analysis of lipid deposits in the primary steroidogenic tissues revealed a hierarchy of StAR function provided by N47-StAR: florid lipid deposits were seen in the adrenal cortex and ovarian theca region, with milder deposits in the Leydig cells. Our results confirm the ability of StAR lacking its mitochondrial targeting signal to perform some essential functions in vivo but also demonstrate important functional defects that differ from in vitro studies obtained in nonsteroidogenic cells

    Preconditioning as a Potential Strategy for the Prevention of Parkinson’s Disease

    No full text
    corecore