1,077 research outputs found

    Self-assembled germanium islands grown on (001) silicon substrates by low-pressure chemical vapor deposition

    No full text
    The time evolution of self-assembled Ge islands, during low-pressure chemical vapor deposition (LPCVD) of Ge on Si at 650 Deg C using high growth rates, has been investigated by atomic force microscopy, transmission electron microscopy, and Rutherford backscattering spectrometry. We have found three different island structures The smallest islands are "lens-shaped" and characterized by a rather narrow size distribution, ~4nm high and ~20nm wide. Next to form are a distinct population of multifaceted "dome shaped" islands, up to 25nm high and 80-150 nm wide. Finally, the largest islands that form are square-based truncated pyramids with a very narrow size distribution ~50nm high and ~250nm wide. The pyramidal islands normally seen in the intermediate size range (~150nm) are not observed. The small lens-shaped islands appear to be defect free, while some of the multifaceted islands as well as all the large truncated pyramids contain misfit dislocations. The existence of multifaceted islands, in the size range where multifaceted "dome shaped" islands have previously been reported, is attributed to the high growth rate used. Furthermore, under the growth conditions used, the truncated-pyramid-shaped islands are characterized by a very narrow size distribution

    Protocol: Systematic Review of Whole System Approaches to Obesity

    Get PDF

    Tunable reflection minima of nanostructured antireflective surfaces

    No full text
    Broadband antireflection schemes for silicon surfaces based on the moth-eye principle and comprising arrays of subwavelength-scale pillars are applicable to solar cells, photodetectors, and stealth technologies and can exhibit very low reflectances. We show that rigorous coupled wave analysis can be used to accurately model the intricate reflectance behavior of these surfaces and so can be used to explore the effects of variations in pillar height, period, and shape. Low reflectance regions are identified, the extent of which are determined by the shape of the pillars. The wavelengths over which these low reflectance regions operate can be shifted by altering the period of the array. Thus the subtle features of the reflectance spectrum of a moth-eye array can be tailored for optimum performance for the input spectrum of a specific application

    The Liturgical Dramas for Holy Week at Barking Abbey

    Get PDF

    Phytochrome, plant growth and flowering

    Get PDF
    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated

    Electronic structure of the muonium center as a shallow donor in ZnO

    Full text link
    The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a [0001] axis, indicating that they are located at the AB_{O,//} and BC_{//} sites. It is inferred from their small ionization energy (~6 meV and 50 meV) and hyperfine parameters (~10^{-4} times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR
    • …
    corecore