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Abstract: We describe a simple time series transformation to detect differences in
series that can be accurately modelled as stationary autoregressive (AR) processes.
The transformation involves forming the histogram of above and below the mean run
lengths. The run length (RL) transformation has the benefits of being very fast, com-
pact and updatable for new data in constant time. Furthermore, it can be generated
directly from data that has already been highly compressed. We first establish the
theoretical asymptotic relationship between run length distributions and AR models
through consideration of the zero crossing probability and the distribution of runs. We
benchmark our transformation against two alternatives: the truncated Autocorrelation
function (ACF) transform and the AR transformation, which involves the standard
method of fitting the partial autocorrelation coefficients with the Durbin-Levinson re-
cursions and using the Akaike Information Criterion stopping procedure. Whilst op-
timal in the idealized scenario, representing the data in these ways is time consuming
and the representation cannot be updated online for new data. We show that for clas-
sification problems the accuracy obtained through using the run length distribution
tends towards that obtained from using the full fitted models. We then propose three
alternative distance measures for run length distributions based on Gower’s general
similarity coefficient, the likelihood ratio and dynamic time warping (DTW). Through
simulated classification experiments we show that a nearest neighbour distance based
on DTW converges to the optimal faster than classifiers based on Euclidean distance,
Gower’s coefficient and the likelihood ratio. We experiment with a variety of clas-
sifiers and demonstrate that although the RL transform requires more data than the
best performing classifier to achieve the same accuracy as AR or ACF, this factor is
at worst non-increasing with the series length, m, whereas the relative time taken to
fit AR and ACF increases with m. We conclude that if the data is stationary and can
be suitably modelled by an AR series, and if time is an important factor in reaching
a discriminatory decision, then the run length distribution transform is a simple and
effective transformation to use.

Keywords: Time series classification; Run length distribution, Auto regressive model
approximation.

Authors’ Addresses: A. Bagnall and G. Janacek, University of East Anglia, Norwich
Research Park, Norwich NR4 7TJ, UK, email: Anthony.Bagnall@uea.ac.uk; G.Janacek@uea.
ca.uk.

Published online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/19085999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Bagnall and G. Janacek

1. Introduction

At the heart of any time series data mining task is the requirement
to measure the similarity between time series. There are essentially two ap-
proaches to modelling time series: models based on autocorrelation function
(ACF) and models based on fitted curves. Auto regressive moving average
(ARMA) models and the multitude of variants that are derived from the ACF
have featured strongly in the statistical literature and have been shown to ac-
curately model many real world data sets. However, the vast majority of
the statistical literature focusses on either alternative model fitting methods
and structures, or forecasting with models fitted to fairly short series. There
has been very little consideration of how best to measure similarity between
series in terms of time series objectives such as query, clustering, classifica-
tion or anomaly detection. The few papers that do consider discriminating
between ARMA series tend to concentrate on alternative modelling meth-
ods to account for factors such as co-integration (for example, see Maharaj
1996, 1999, 2000) or consider alternative ways of comparing model parame-
ters (Corduas and Piccolo 2008; Liao 2005; Kalpakis, Gada and Puttagunta
2001; Piccolo 1990). Our overall aim is to apply some of the modelling
techniques developed in statistics to data mining problems, with the objec-
tive of rapid, efficient discrimination. Our major focus is on how best to
classify time series, although the techniques we describe translate easily to
other problem domains such as clustering and query by content.

In Bagnall, Davis, Hills, and Lines (2012) it is argued that the easiest
way to gain improvement on TSC problems is to transform into an alterna-
tive data space where the discriminatory features are more easily detected.
One transform considered in Bagnall et al. (2012) was the ACF, and classi-
fiers built on the ACF were found to outperform classifiers built in the time
domain and the principal component space on several standard test prob-
lems. However, one potential problem with using the ACF is the time taken
to perform the transform, and the requirement to repeat the transform in the
presence of new data. We propose a run length transformation that can detect
similarity in auto-correlation without the time consuming step of forming
the ACF. A run of length k is a sequence of k contiguous observations that
are all above or all below the mean. The run length transform is simply a his-
togram that counts the occurrences of runs of length (1, 2, . . . , s) for some
predefined s < m, wherem is the series length. The fundamental motivation
behind this research is that the runs distribution varies with the correlation
structure of the original series and hence can be used to discriminate between
series from different models. The benefit of using the run length transform
is that it is simple to perform, easy to understand, can be done in linear time
and updated in constant time. Furthermore the run length histogram can be
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calculated directly from data that has been already compressed into a binary
series of below and above the mean (clipped). This means that the run length
transform can be exactly calculated from data already compressed at a rate
of between 32:1 to 256:1. In Section 2 we give some background into time
series classification and auto regressive models. In Section 3 we describe
the run length transform and show that asymptotically the auto correlation
function and the run length distribution are theoretically linked. This shows
that, with long enough series, class differences embedded in the ACF will
also be expressed in differences in the run length histogram. In Section 4 we
describe four alternative distance measures that can be used with run length
histograms. In Section 5 we describe our algorithm for generating stationary
auto regressive series and outline the classification experimental regime we
use for Section 6, where we conduct a series of four sets of classification ex-
periments with simulated data sets to evaluate the run length transformation.
We perform a case study with real world data in Section 7 and summarize
our findings in Section 8.

2. Background

2.1 Time Series Classification (TSC)

We define time series classification as the problem of building a clas-
sifier from a collection of labelled training time series. We limit our attention
to problems where each time series has the same number of observations.
We define a time series xi as a set of ordered observations

xi =< xi1, . . . , xim >

and an associated class label yi. The training set is a set of n labelled pairs

D = {(x1, y1), . . . , (xn, yn)}.

TSC problems have been addressed by researchers in a wide range of fields
including, but not limited to, data mining, statistics, machine learning, signal
processing, environmental sciences, computational biology, and chemomet-
rics. For traditional classification problems, the order of the attributes is
unimportant and the interaction between variables is considered indepen-
dent of their relative positions. For time series data, the ordering of the vari-
ables is often crucial in finding the best discriminating features. There are
three broad categories of TSC discriminating features which are described
by three general approaches to measuring similarity between time series:
similarity in time, similarity in shape and similarity in change.
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Similarity in time can be quantified by measures such as Euclidean
distance or correlation (Douzal-Chouakria, Diallo, and Giroud 2010; Abra-
ham and Tan 2010). Similarity in time is characterized by the situation
where the series from each class are observations of an underlying com-
mon curve in the time dimension. Variation around this underlying common
shape is caused by noise in observation, and also by possible noise in in-
dexing which may cause a slight phase shift. A classic example of this type
of similarity is the Cylinder-Bell-Funnel artificial data set, where there is
noise around the underlying shape, but also noise in the index of where the
underlying shape transitions (see, for example Douzal-Chouakria and Am-
blard 2012). The majority of research into TSC has concentrated on this
area. In data mining research, the commonly used benchmark classification
algorithm is 1-NN with an elastic measure such as Dynamic Time Warping
(DTW) to allow for small shifts in the time axis (Ding, Trajcevski, Scheuer-
mann, Wang, and Keogh 2008). Alternative approaches used in other re-
search fields include weighted dynamic time warping (Jeong, Jeong, and
Omitaomu 2010), support vector machines built on variable intervals (Ro-
driguez and Alonso 2005), tree based approaches (Douzal-Chouakria and
Amblard 2012; Deng, Runger, Tuv, and Vladimir 2011), and fusion of alter-
native distance measures (Buza 2011).

Similarity in shape describes the scenario where class membership
is characterized by a common shape but the discriminatory shape is phase
independent. If the common shape involves the whole series, but is phase
shifted between instances of the same class, then transformation into the
frequency domain is one valid approach (Agrawal, Faloutsos, and Swami
1993). If the common shape is local and embedded in confounding noise,
then a subsequence techniques such as Shapelets can be employed (Ye and
Keogh 2009; Lines et al. 2012).

Similarity in change relates to the situation where the relevant dis-
criminatory features are related to the autocorrelation function of each se-
ries. The most common approach in this situation is to fit an ARMA model
then base similarity on differences in model parameters (Corduas and Pic-
colo 2008; Liao 2005; Kalpakis, Gada and Puttagunta 2001; Piccolo 1990).
Related problems include accounting for factors such as co-integration (for
example, see Maharaj 1996, 1999, 2000) or using difference (van Wyk, van
Wyk, and Qi 2009). The common element to this work is that similarity
between series is not measured in the time domain.

Our sole concern lies in problems where classification is best achieved
through measures of similarity in change. Techniques for similarity in time
will not work for problems where similarity lies in the ACF function. We
demonstrate this point in Section 6.5. However, the converse is also true. In
Bagnall et al. (2012) we show that, for certain types of TSC problems, class
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similarity is detectable in phase independent and/or auto correlation related
feature spaces rather than in the time domain. Though complex classifiers
may be able to reconstruct this similarity through the internal non-linear
mapping they employ to construct the classifier, a far simpler and more in-
tuitive approach is to transform the data into an alternative space and use a
basic classifier. We propose a method for detecting differences in series that
can be accurately modelled as stationary autoregressive (AR) processes that
simple, faster than fitting the whole model and can be updated in constant
time.

2.2 Auto Correlation and Auto Regressive Models

One of the most important basic transformations is the autocorrelation
function, which measures the interdependence of terms in the time domain.
The observed vector of ACF terms of time series x, which we denote ρ̂ =<
ρ̂1, ρ̂2, . . . , ρ̂l >, is defined as

ρ̂k =

∑m−k
i=1 (xi − x̄)(xi+k − x̄)∑m

i=1(xi − x̄)2
.

where l < m is the maximum lag to consider. The quantity ρ̂k is called the
sample autocorrelation coefficient at lag k and has range [−1, 1]. Our basic
premise is that for a subset of TSC problems, the within class similarity is
best detected from the ACF or some function of the ACF, rather than from
the time domain data.

One feature of the ACF is that the terms are not independent. A low
order autocorrelation will persist in higher order terms. The standard way for
compensating for this is to find the Partial Autocorrelation Function (PACF)
λ, where λi is the autocorrelation between terms Xi and Xi+k with the
effect of all the intermediate variables Xi+1,Xi+2, . . . ,Xi+k−1 removed.
The PACF is derived from the Yule Walker equations and usually calculated
using the Durbin-Levinson recursions. For details see any standard Time
Series book such as Box, Jenkins, and Reinsel (2008). The traditional use
of the ACF and the PACF is in fitting an Autoregressive Moving Average
(ARMA) model to the data. An ARMA model is of the form

Xt = c+

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i + εt

where c is a constant, and φi and θi are parameters which satisfy the invert-
ibility and stationarity conditions (which require all solutions of the char-
acteristic equations be in the range -1 and 1). The random variables εt are
assumed to be independent, identically and normally distributed with zero
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mean and constant variance. For TSC we assume that each series within the
same class is a series of m observations from a common underlying ARMA
model. Given an observed time series x, the standard statistical methodol-
ogy for fitting a model involves the following steps:

1. estimate the autocorrelation function (ACF) r from the data x;

2. estimate the partial autocorrelations (PACF) λ from the ACF r using
the Durbin-Levinson recursions;

3. choose the appropriate model that minimizes the Akaike Information
Criterion (AIC).

Details on these steps can be found in Durbin (1960). Whilst clearly an
appropriate approach if an ARMA model does in fact represent class simi-
larity, there are two potential problems with these transforms. Firstly, whilst
the ACF can be found in O(nlog(n)), finding the PACF is O(n2). Faster
worst case O(n log2(n)) algorithms do exist (Bojanczyk, Brent, and De
Hoog 1995) but they are complex and are on average not much faster than
the standard approach. Secondly, if new data is observed, there is no easy
way to update the PACF and the whole procedure must be repeated. Our
objective is to find fast approximations of the fitted model that can be used
to discriminate between different underlying generating models when there
are time constraints on the process.

We have written basic filters in the machine learning Java toolkit
WEKA (Witten et al.1999) to perform these transformations. All code is
available for download from:

http://www.uea.ac.uk/computing/machine-learning/runlengths.

3. Run Length Transform

A run in a time series is a contiguous sequence of observations that
are all either above or below the mean. The number of runs in a series is
commonly used as a test of independence. The run length distribution is a
sequence of counts of the number occurrences of runs of length (1, 2, . . . , s)
for some predefined s. Figure 1 describes the run length transform and Fig-
ure 2 shows a small example.

Two further refinements are used. For comparing series of unequal
length, we convert the run length distribution into a run length proportion,
by simply dividing each data by the run sum. Secondly, for classification
problems, we can remove the need for the parameter s by setting s equal to
m, then removing the attributes for which all values are zero.

In Bagnall and Janacek (2005) we proposed using the clipping trans-
formation for time series data mining. Clipping is simply a transformation
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Input: A time series x of length m, the series mean μ and the
max run length s.

Output: A run length histogram r.

Initialise r to all zeroes.
l = 1
for i = 2 to m do

if (xi−1 < μ ∧ xi < μ) ∨ (xi−1 > μ ∧ xi > μ) then
l = l + 1

else
if l < s then

rl = rl + 1
else

rs = rs + 1
end if
l=1

end if
end for
return r

Figure 1. The run length transform algorithm.

Figure 2. A small example of the run length transform.
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of a real valued series into a binary series of above and below the average.
Clipping the series allows for the data to be massively compressed and also
offers the potential to use very fast bit operators. We showed that AR mod-
els derived from the compact clipped representation are theoretically related
to models derived from the original data and that the discriminatory power
was thus asymptotically equivalent. In Bagnall, Ratanamahatana, Deogh,
Sonardi, and Janacek (2006) we showed that as a natural consequence of
using clipped data we could generate run lengths, and that if we used a
variable length run length encoding we could utilize the Kolomgorov com-
pression to cluster shaped based series. This form of similarity will detect
some forms of variation in the run length distributions, but it is not discrim-
inatory enough to detect small differences between the generating model of
series caused by differences in autocorrelation function. Hence we were
lead to consider the relationship between the run length distribution and the
autocorrelation function.

The probability of crossing the zero level by a series is called the zero
crossing probability and is obviously related to the run lengths distribution.
Suppose that D is the zero crossing count of a discrete time series of length
m. If the original data has zero mean, D is simply the sum of the run length
transform, D =

∑s
i=1 ri − 1, (where ri is the count of number of runs of

length i), since each run representing a zero crossing. It can be shown (see
Kedem 2008)

lim
m→∞

D

m
=

1

π
cos−1(ρ(1)). (1)

Where ρ(1) is population autocorrelation of lag 1. This result shows there
is a direct relationship between the distribution of the number of zero cross-
ings and the autocorrelation lag ρ(1) and hence if we measure the number
of zero crossings we can, asymptotically at least, make observations about
the variability of the autocorrelations of lag 1. This suggests that the more
detailed information in the run length transform may inform us about the
variability of the higher order autocorrelations. If we assume a series x is
a set of observations from normally distributed random variables {Xt}, the
probability of a zero crossing is

P [(Xt−1 < 0 and Xt > 0) or (Xt−1 > 0 and Xt < 0)]

and

P [Xt−1 < 0 and Xt > 0] =

∫ 0

−∞

∫ ∞

0
f(xt−1, xt)dxt−1dxt

where f is the bivariate normal distribution. To compute the probability of
a run of length i we need to find the probability

p[Xt < 0,Xt+1 > 0,Xt+2 > 0, · · · ,Xt+i > 0,Xt+i+1 < 0]
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and

p[Xt > 0,Xt+1 < 0,Xt+2 < 0, · · · ,Xt+i < 0,Xt+i+1 > 0].

We can write these probabilities as i+2 fold integrals of multivariate normal
distributions. Our evaluations of these probabilities thus depends on the
evaluation of integrals of the form

1√|Σ|(2π)i
∫ 0

∞

∫ ∞

0
· · ·

∫ ∞

0

∫ 0

∞
exp

(
−1

2
xTΣ−1x

)
dx

where x = (xt, xt+2, · · · , xt+i+1)
T and Σ is the covariance matrix con-

structed from the first i + 2 autocorrelations. So although it is computa-
tionally impractical, given the autocorrelation function ρ we could in theory
calculate the probability of observing a run of any length i. It thus follows
that variability in the ACF expressed in the observed series will also express
itself in the run length distribution, and hence, with long enough series, we
should be able to discriminate between different series using the runs distri-
bution alone.

4. Run Length Similarity

The majority of research into AR based methods uses Euclidean dis-
tance between fitted model parameters as a similarity metric (see, for exam-
ple, Corduas and Piccolo 2008), and for the full fitted models we also adopt
this approach. However, there are two basic potential problems with using
Euclidean distance as a metric between two run length distributions. Firstly,
Euclidean distance gives a much higher weighting proportionately to small
differences in runs with large counts over runs with small counts. This may
mean that subtle differences are overwhelmed by differences caused by ran-
dom fluctuation. We overcome this problem by defining alternative point-
wise distance measures. The second problem is that pointwise similarity
ignores the fact that there is embedded adjacency information in the distri-
bution; for example, a source series with a large count of runs length 2 is
more similar to another series with a large run count of 3 than it is with one
with a large run count of 30. To utilize this information we use a dynamic
time warping between run length distributions as a distance measure.

Suppose we have two run length distributions, a = {a1, a2, . . . , as}
and b = {b1, b2, . . . , bs}. A distance function between a and b, denoted
d(a,b), is effectively a test of whether a and b are drawn from the same
population distribution. The obvious way to perform this test that does not
over-weight to large values is to use the χ2 statistic. However, since χ2

is based on the ratio of observed and expected values, it has the opposite
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problem to Euclidean distance: it can give excessive weight to small ob-
servations. It is common practice to merge observations with low counts
(typically with expected value less than 5) to mitigate against this effect.
This is computationally complex, and requires some subjective decisions.

Suppose, for example, we are comparing the distributions a =
{14, 0, 7, 3, 2, 1, 0, 0} with b = {7, 7, 7, 6, 0, 0, 0, 0} (note for simplicity we
are merging on observed values not expected, but the point still holds). His-
togram a dips at a2 and tails off, whereas b is flat and ends abruptly at b4.
To effectively use χ2 we should merge elements with value less than 5. If
we merge by tracking backwards from the end of the distribution we get
a = {14, 0, 7, 6, 0, 0, 0, 0}, but we are still left with the zero observation
at a2. Should this be merged with a1 or a3? Suppose we choose (arbi-
trarily) to merge it with a1. Do we perform the same transform on b? If
so, we end up with the two identical series a′ = {14, 7, 6, 0, 0, 0, 0, 0} with
b′ = {14, 7, 6, 0, 0, 0, 0, 0}. If we had chosen to merge a2 with a3, b be-
comes b′ = {7, 14, 6, 0, 0, 0, 0, 0} and is now very different to a. If we
chose not to alter b it becomes difficult to compare the distributions since
the indexes are different. To avoid these problems, we propose two alterna-
tive pointwise distance measures commonly used to compare counts data:
the Gower coefficient and the Likelihood ratio statistic.

4.1 The Gower Coefficient

We derive a statistic to measure similarity that is based on “General
Similarity Coefficient” (Gower 1971). The Gower coefficient is designed
to measure the similarity between two units from a sample of observations.
For real valued attributes it involves normalising data by the range.

Suppose we have a data set X = {x1, . . . ,xn} of n time series, which
we convert into n run length distributions R = {r1, . . . , rn}, each of which
has s run length counts ri = {ri1, . . . , ris}. So rij denotes the count of runs
of length j in the ith time series. Let vk denote the range of values for the
kth attribute, i.e.

vk = max
i=1,...,n

(rik)− min
i=1,...,n

(rik)

The Gower similarity coefficient for two series ri and rj is then

g(ri, rj) =
∑
k

1− (rik − rjk)

vk

Note most definitions include an attribute weighting term, which we
ignore for simplicity. g is a measure of similarity. We redefine it for distance
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as

dg(ri, rj) =
∑
k

(rik − rjk)

rk

We refer to dg as the Gower coefficient. Differences in variables with
small ranges contribute more to dg than those with large ranges. (See also
Cox and Cox 2000). Whilst this mitigates against the problems with using
Euclidean distance, it does require a set of observations. With many appli-
cations such as anomaly detection distances are calculated between subse-
quences of the same series and there is no fixed set of observations. Hence
we define a second pointwise distance measure based on the likelihood ratio
that can measure the distance between any two series.

4.2 Likelihood Ratio Distance

The likelihood ratio test is a commonly used alternative to the χ2 test
of distributions. Hence we can adapt the likelihood ratio test statistic for
multinomial distributions to form a distance measure between histograms.
For any two series a =< a1, . . . , as >,b =< b1, . . . , bs >, let ma =∑s

i=1 ai, mb =
∑s

i=1 bi. The observed frequency for each index i in a and
b is then

pai
=

ai
ma

,
bi
mb

and the overall observed frequency is

pi =
ai + bi

ma +mb
.

The likelihood ratio test statistic, which we denote dl as we are using
it as a distance measure, is

dl(a,b) =
∑

pai
log

(
pai

pi

)
+

∑
pbi log

(
pbi
pi

)

Unlike the Gower coefficient, the log likelihood does not require ranges
over a set of series. It avoids the problem of zero counts, since they do not
contribute to the sum. Neither statistic allow for the adjacency relationship
present in runs histograms. To utilize this we employ a dynamic time warp-
ing measure.

4.3 Dynamic Time Warping

For similarity in shape, Dynamic Time Warping (DTW) is commonly
used to mitigate against distortions in the time axis (Ratanamahatana and
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Keogh 2005). Suppose we want to measure the distance between two run
length distributions, a = {a1, a2, . . . , as} and b = {b1, b2, . . . , bs}. Let
M(a,b) be the m ×m pointwise distance matrix between a and b, where
Mi,j = (ai − bj)

2.
A warping path W =< (e1, f1), (e2, f2), . . . , (ek, fk) > is a set of

points (i.e. pairs of indexes) that define a traversal of matrix M . So, for
example, the Euclidean distance dE(a,b) =

∑k
i=1(ai − bi)

2 is the path
along the diagonal of M , i.e.We =< (1, 1, (2, 2), . . . , (s, s) >.

A valid warping path must satisfy the conditions (e1, f1) = (1, 1) and
(ek, fk) = (m,m) and that 0 ≤ ei+1 − ei ≤ 1 and 0 ≤ fi+1− fi ≤ 1 for all
i < m.

The DTW distance between series is the path through M that min-
imizes the total distance, subject to constraints on the amount of warping
allowed. Let wi = Maei

,bfi
be the distance between element at position ei

of a and at position fi of b for the ith pair of points in a proposed warping
path P . The distance for any path P is

DP (a,b) =
k∑

i=1

wi.

If W is the space of all possible paths, the DTW path W is the path
that has the minimum distance, i.e.

W = min
P∈W

(DP (a,b)),

and hence the DTW distance between series is

DW (a,b) =
k∑

i=1

wi,

The optimal path W can be found exactly through a dynamic pro-
gramming formulation. This can be a time consuming operation, and it is
common to put a restriction on the amount of warping allowed. This restric-
tion is equivalent to putting a maximum allowable distance between any
pairs of indexes in a proposed path. If the warping window is h, then the
optimal path is constrained so that |ei − fi| ≤ h ∀(ei, fi) ∈ W . Since
our histograms are short and we wish to set a small warping window (be-
cause we are only interested in compensating for small misalignments in the
histograms), the DTW distance will not introduce much of a time overhead.

5. Experimental Setup

Our interest lies in discriminating between series emanating from au-
toregressive models. We are not claiming that the run lengths approach will



Discriminating Between Auto Regressive Time Series

be necessarily useful for other sorts of data (in fact, we demonstrate it is
not suitable for many problems in Section 6.5). We further restrict our at-
tention to weakly stationary series (series with constant mean and variance).
This is because our focus is on long series, and discriminating between long
non-stationary series from different models will be best achieved in the time
domain. If the class models are non-stationary, then the difference between
instances of one class and another will be dominated by the trend rather than
the the short term fluctuations that characterize stationary series.

The basic hypotheses we are testing is whether one transformation/
distance measure is better than another for a given class of generating data.
Our definition of whether one algorithm is better than another is that it has
a higher average classification accuracy over the population of all stationary
AR models considered for a particular classification experimental set up.
The set up we use for all classification experiments involves two randomly
generating models representing two classes.

To compare two algorithms for any fixed series length m we randomly
generate k model pairs using the algorithm described below. For each of
these pairs we generate n train/test data sets and record the testing accuracy.
We then average the accuracy over the test data sets for a particular model
and over all the models used for that particular value of m. We repeat this for
increasing values of m to demonstrate the asymptotic behaviour. Our bench
mark performance is always the fitted AR model which, given the data is
from an AR process, should on average be optimal, all other parameters
being equal.

Generating random stationary models for classification is not partic-
ularly easy. We need to control two factors: firstly, the models must be
stationary; and secondly, they must be both distinguishable from each other
with enough data and non-trivial for smaller data set sizes. Given a set of
random numbers between -1 and 1, it is possible to generate the stationary
AR parameters by solving the system of linear equations that result from the
stationary restriction on the the characteristic equation

1−
p∑

i=1

φir
p = 0

using any standard algorithm such as Gaussian elimination via LU decom-
position. The resulting solution gives the parameters of a stationary AR
model of order p. The algo

1. For model 1.

(a) Randomly choose a number of parameters p1 between 1 and 10.
(b) Generate p1 random numbers between -0.9 and 0.9, r1 =

{r1, . . . , rp1
}.
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2. For model 2.

(a) Perturb p1 by a random number between -2 and 2 (inclusive) to
find p2.

(b) Perturb the first min(p1, p2) terms of r1 by between -10% and
10% to obtain r2.

(c) If p2 > p1 generate p2 − p1 random parameters and add to r2.

3. Solve the systems of linear equations to find the two sets of valid (i.e.
stationary) AR parameters φ1 and φ2 .

4. Generate train/test data sets of series length m = 400 and m = 1000.
5. Perform a 1-NN test classification on the fitted AR parameters on both

small and large data sets.
6. If test accuracy on the smaller m = 400 data set is less than 60% or

greater than 90% reject the model.
7. If test accuracy on the larger m = 1000 data set is 100% or less than that

on the smaller set, reject the model.

The code for doing this is available from:
http://www.uea.ac.uk/computing/machine-learning/runlengths.

6. Results

The experimental series is designed to highlight the merits of the run
length transformation. We demonstrate that as the length of the series in-
creases the discriminatory power of the run length distribution approaches
that of the full AR model (Section 6.1), then evaluate the alternative dis-
tance measures for run length distributions and conclude that dynamic time
warping performs the best of those considered (Section 6.2), and that it out-
performs the ACF and FFT (Section 6.3). The real benefit of using the run
length is the speed of performing the transform, hence in Section 6.4 we
show that if the amount of time to construct the model is constrained (mean-
ing less data can be used to fit the full model) then the run length transform
can produce more accurate classifiers than those found from the full model.
For completeness, in Section 6.5 we demonstrate that for shape based simi-
larity the AR and run length approach is not as effective as previously pub-
lished alternatives. Finally, we conduct a case study on data relating to heart
rates whilst meditating where the approach is appropriate.

6.1 Asymptotic Equivalence Between Run Lengths and the Full AR
Model

The main result of this paper is that as series get longer, it is not neces-
sary to fit the full AR model to data in order to discriminate between alterna-



Discriminating Between Auto Regressive Time Series

Figure 3. Testing classification accuracy for increasing m using Euclidean distance with a 1-
Nearest Neighbour classifier on the raw data, the fitted ARMA parameters and the run length
histogram. The two class generating models are both AR(1) with parameters φ = 0.5 and
φ = 0.7 respectively. Each point is the average testing accuracy of ten runs, with a training
set and testing set of 100 series of each class.

tive generating models. Figure 3 demonstrates this with a simple simulated
classification problem. As the size of the series increases, the classification
accuracy using the run lengths distribution approaches the accuracy of using
the fitted AR parameters.

In Figure 3 we include Euclidean distance on the raw data to highlight
that the type of series we are considering is not distinguishable by the com-
monly used distance measures used in the time series data mining literature.
We do this to highlight the fact that we are only considering a certain class
of problem.

6.2 Alternative Distance Measures for Run Lengths

This experiment assesses the four proposed distance metrics to use
with run length distributions and compares them to results achieved using
the full fitted AR model. Given the fact that the simulated data is generated
by an AR model, discriminating with the estimated AR model fitted on the
whole data set is clearly the optimal approach. Hence we wish to assess
which of the four metrics best approximates the full model. The maximum
run length stored was set to 10% of original data length. So for series length
1000, all runs over 100 were recorded as the same length. The maximum
warping window was set to 10% of the size of the maximum run length.
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Table 1. Average testing classification accuracy on test data sets for two class AR problems
using a 1 Nearest Neighbour classifier and five different distance metrics. Results are for
full AR model (AR+Euclidean) and with the run lengths distribution (RL+measure) with
four alternative distance metrics. Each cell contains the mean (standard deviation) over 200
randomly generated models (100 models for m = 5000).

m AR+Euclidean RL + Euclidean RL + Gower RL + Likelihood RL + DTW
200 57.24% (4.83) 52.27%(4.80) 52.68% (5.3) 52.70% (4.833) 54.00% (4.88)

1000 76.20% (9.56) 53.63% (4.88) 58.79% (7.98) 57.93% (7.21) 61.67% (9.23)
5000 78.18% (17.90) 59.86% (3.98) 70.30% (18.64) 68.76% (6.78) 77.84% (12.03)

Note these model parameters have been in no way optimized and it’s highly
likely we could achieve similar results with greater compression.

In Table 1, to compare two sets of results for any given m, we perform
both a paired t test and a Kruskal-Wallis paired test. The first observation
to make concerning these results is that for each of the three levels of m,
there is a significant difference in mean accuracy between DTW distance
and the Euclidean, Gower and Likelihood distances. Secondly, Gower and
Likelihood are significantly better than RL+Euclidean, but not significantly
different to each other. Finally, for m = 200 and m = 1000 AR+Euclidean
is significantly more accurate than DTW. However, for m = 5000, there
is no significant difference between AR+Euclidean and RL+DTW. This re-
inforces the theoretical result from Section 2 and the experimental result
from Section 6.1 that there is a strong asymptotic relationship between the
ACF and the runs length and that variations in underlying AR model express
themselves more fully in the run lengths as m gets larger.

6.3 Alternative Transformations

In Section 6.1 we demonstrated that for large enough m dynamic time
warping of the run length histogram gives an accuracy that is not signifi-
cantly worse than that obtained using Euclidean distance on the fitted AR
parameters. However, the obvious next question is how does the RL trans-
form perform in comparison to other possible transformations. There are
two popular transformations used in the data mining and machine learning
community for classification/clustering data based on autoregressive struc-
ture. The first involves taking the Fourier transform and retaining a sub-
set of the coefficients of Agrawal, Faloutsos, and Swami (1993), and Wu,
Agrawal, and El Abbadi (2000). The Fourier terms are particularly useful
because they can be used to differentiate between both shape and structure,
depending on the distance measure used. The other approach often seen in
the Machine Learning literature is to find the ACF and simply use it as a set
of new features. It should be noted that although faster than finding the full
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Figure 4. Testing classification accuracy for increasing m using 1-NN.

fitted model through the PACF, neither of these approaches is linear in m.
Furthermore, neither can be updated in constant time. To assess whether the
simpler and faster histogram approach compares to these alternatives, we
ran classification experiments for varying values of m. The average testing
accuracy is shown in Figure 4.

Firstly Figure 4 shows us that once the series are longer than approx-
imately 1000, the RL transformation performs better than using the ACF.
Secondly, whilst the RL is clearly tending towards the AR accuracy, the gap
between AR and ACF is maintained (the ACF accuracy is approximately
80% of the ARMA accuracy for all sizes of m). This demonstrates that
there are fundamental differences between the series that are not detectable
in the ACF but which can be detected in the RL distribution, given enough
data. Thirdly, the FFT approach is clearly not able to differentiate between
the series. We include these results to demonstrate the importance of clari-
fying whether shape based or model based similarity is required. We used
the standard Euclidean distance measure on the FFT, which is really just an
approximation of Euclidean distance, and hence inappropriate. We also ex-
perimented with using DTW on the AR coefficients, the periodogram of the
FFT and on the ACF, but the results were not significantly different to those
obtained without warping. Table 2 presents the data from Figure 4 alongside
the associated warping results.

6.4 Classification with Limited Time

The transformation we propose is appropriate when predictions are
needed quickly, new data is constantly arriving or the data has already been
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Table 2. 1-NN classification accuracy with both Euclidean and DTW distance.

m AR(Euclid) AR(DTW)RL(Euclid) RL(DTW)FFT(Euclid) FFT(DTW)ACF(Euclid) ACF(DTW)
200 59.15% 58.30% 53.88% 55.63% 52.65% 53.75% 56.90% 54.68%
600 69.73% 68.78% 53.20% 57.75% 52.13% 51.95% 60.30% 56.93%

1000 71.30% 71.70% 53.80% 59.18% 52.93% 55.08% 61.75% 53.05%
1400 80.77% 81.35% 58.35% 67.53% 53.50% 52.23% 64.10% 59.02%
1800 78.40% 77.87% 57.50% 66.98% 53.88% 51.25% 64.50% 55.83%
2200 81.07% 81.05% 57.53% 71.55% 53.18% 52.72% 64.93% 57.10%
2600 79.93% 80.25% 56.65% 69.60% 51.72% 50.93% 64.13% 55.82%
3000 80.88% 80.68% 57.15% 72.40% 52.40% 51.05% 65.27% 56.40%
3400 84.95% 85.47% 60.65% 79.57% 52.67% 52.25% 65.38% 60.15%
3800 79.93% 79.78% 58.42% 74.75% 52.58% 52.28% 65.40% 58.08%
4200 81.62% 81.85% 58.93% 77.30% 51.68% 52.97% 66.13% 60.32%
4600 82.45% 82.58% 61.90% 79.55% 52.40% 52.35% 67.40% 59.70%

transformed into clipped data. To simulate the scenario of limited time we
examine what happens to the classification accuracy when we allow the RL
method access to more data than the AR or the ACF transform. We compare
DTW with run lengths against logistic regression for AR and ACF (in further
experimentation not reported here, logistic regression was found to outper-
form 1-NN for AR and ACF). We fix the series length for AR and ACF to
500 but increase the length of series available to RL(DTW) and measure the
associated testing accuracy. Figure 5 shows that RL outperforms the other
two methods with approximately 3000 data.

Table 3 shows what happens when we vary the amount of data for AR
and ACF. The second column gives the size of m at which RL(DTW) first
outperforms both AR and ACF transforms. The third column shows that the
multiple of data required by RL(DTW) is constant or possibly decreasing.
Table 4 gives some timing results for increasing m and demonstrates that
the RL transform is an order of magnitude faster than the other approaches.

The final columns in Tables 3 and 4 clearly demonstrate as m in-
creases, the time taken to transform is increasing but the proportion of extra
data required by RL is constant. Hence, if time is an issue and the time
series are long, then better results will be achieved by using the run length
transform for classification.

6.5 UCR Datasets

In Figure 3 we include Euclidean distance on the raw data to highlight
that the type of series we are considering is not distinguishable by the com-
monly used distance measures used in the time series data mining literature.
It is worth making the point that the converse is also true. ARMA models
do not work well with shape based problems. Table 5 gives the classifica-
tion accuracy for a selection of problems from the Time Series Data Mining
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Figure 5. Accuracy of RL(DTW) for increasing m vs AR and ACF using logistic regression
with m = 500.

Archive (Keogh and Folias). Given the run length distribution is designed
for long series, we selected the twelve problems with the longest series,
ranging in length from 500 to 2709. The classifier built in the time domain
outperforms the auto regressive and the run length classifiers. We include
these results to emphasize that we are considering only long series that can
be well fitted by a stationary auto-regressive model, and that the techniques
we propose do not necessarily generalize to all time series problems. In the
following section we identify a problem where the approach is appropriate.

7. Meditation

Our final experiment is a real world case study which we include to
highlight the advantages of using the run length distribution and to reinforce
the conclusions drawn on simulated data. The data comes from the paper
“Exaggerated Heart Rate Oscillations During Two Meditation Techniques”
(Peng et al.1999) and was downloaded from PhysioNet. The study involved
taking time series of measurements of heart rates approximately every sec-
ond from a set of subjects with the objective of finding differences in the
change in heart rate between normal subjects and those meditating using
either Chi or Kundalini techniques. There were four groups of subject:

• Chi meditation group. There are two time series for each of the eight
subjects, one before meditation, one during meditation. Each series is
about one hour in duration.
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Table 3. Size of data set (to the nearest 100) for RL(DTW) to outperform both AR(logistic)
and ACF(logistic).

Fixed m for AR and ACF m when RL(DTW) first wins Estimated Ratio
100 300 3
200 1300 7
300 1500 5
400 2000 5
500 2800 6
600 2400 4
700 3200 5
800 3000 4
900 3700 4

Table 4. Time taken to transform 200 data sets of length m, averaged over 30 runs.

m RL(DTW) AR ACF Estimated Ratio (ACF/RL)
500 4.006 43.254 38.06 10
1000 9.328 164.94 146.75 16
1500 17.90 370.47 326.10 18
2000 28.74 657.33 575.050 20
2500 42.48 1043.32 899.593 21
3000 60.37 1545.31 1302.45 22
3500 77.08 2120.25 1746.04 23
4000 93.84 2756.55 2287.04 24
4500 119.52 3517.67 2899.59 24
5000 136.87 4418.22 3620.76 26

• Kundalini Yoga meditation group. As for the Chi group, there are pre-
meditation and meditation series for each of the four subjects. Dura-
tions range from 17 to 47 minutes.

• Spontaneous breathing group. Eleven volunteers were recorded while
sleeping. Durations are 6 hours each.

• Metronomic breathing group. Fourteen Volunteers were recorded while
supine and breathing at a fixed rate of 0.25 Hz for 10 minutes.

• Elite athletes. Nine subjects participated in the Ironman Triathlon;
the recordings were obtained during sleeping hours before the event.
Durations range from 1 to 1.7 hours.

From a spectral analysis they observed that the amplitude of oscillations dur-
ing meditation was significantly greater than in the non meditation group,
and that this large variation contradicts the commonly held notion that med-
itation results in a quiescent state. In later work this has been termed the
“meditation paradox” (Qairunnisa et al. 2012). The initial study focussed
on the variation in amplitude of heart rates. The series are long, and vary
greatly in length (the series range in length from 469 to 26,923), with read-
ings taken approximately every second. To demonstrate the utility of the
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Table 5. 1-NN classification accuracy of on test data sets from the long series UCR data sets.

Data Set Raw Data+Euclidean AR+Euclidean Run Lengths+Euclidean Run Lengths+DTW
FordA 68.18% 73.79% 76.52% 63.71%
FordB 59.14% 60.12% 63.21% 53.58%

Earthquakes 71.22% 71.94% 69.06% 69.06%
OliveOil 83.33% 40.00% 43.33% 40.00%
Lighting2 80.33% 55.74% 59.02% 47.54%
MALLAT 82.09% 61.45% 53.48% 34.07%

StarLightCurves 86.50% 81.85% 54.27% 76.32%
Haptics 39.29% 24.03% 21.10% 20.13%

CinCECGtorso 86.38% 40.07% 31.16% 46.38%
InlineSkate 31.45% 18.91% 16.91% 17.64%

HandOutlines 85.95% 55.41% 50.27% 66.76%

Table 6. Leave one out cross validation error and balanced error for 1-NN classifier with four
distance measures on the meditation data set.

Distance Measure Error Balanced Error
Euclidean 10.34% 15.76%

Gower 13.79% 21.01%
Likelihood Ratio 8.62% 14.67%

DTW 8.62% 11.59%

Table 7. Contingency table for LR and DTW distance on the meditation data

Likelihood Ratio Predicted DTW Predicted
Actual Meditating Not Meditating Meditating Not Meditating

Meditating 9 3 10 2
Not Meditating 2 44 3 43

run lengths transform, we frame the problem as time series classification.
We label the 12 series of subjects performing Chi or Kundalini meditation
as “meditating”, and the 46 series measured under other conditions as “not
meditating”. We transform each series into the run length distribution, then
convert to the run lengths proportion to compensate for the different lengths
of the series. Table 6 shows the error rate and balanced error rate of a leave
one out cross validation using a 1-NN classifier on the histogram distribution
using four distance measures: Euclidean, Dynamic Time Warping, Gower
and Likelihood ratio.

Table 7 shows the contingency tables for the likelihood ratio and
DTW results. DTW performs best, misclassifying just two of the medita-
tion series and three non meditation series. The two misclassified medita-
tion cases were from the shorter Kundalini group. Although the data set is
small and hence we should be careful on drawing too many conclusions,
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Figure 6. The average distribution of run lengths for meditating and non meditating subjects.

these results reinforce the conclusions drawn from simulated data that runs
distributions can be used to detect differences in autocorrelation structure
and that DTW is the best distance measure to use for this. Run lengths
also offer a very simple way to analyse the data that can offer new insights.
Figure 6 shows the average run length distributions for meditating and non-
meditating subjects. Proportionately, meditating subjects have fewer runs of
length 3 or less seconds, and more in the range 4 to 19 seconds. Hence the
larger oscillation in heart rate values for meditators are apparently coupled
with longer runs of above or below the mean. This may be of interest to
domain experts since it may lead to insights into the connection between
breathing rates and heart rate oscillations.

8. Conclusions

This paper has addressed the issue of how to classify data sets where
each case is a long time series that can be accurately modelled by stationary
autoregressive (AR) series. We propose using the run length distribution to
discriminate between data from different stationary AR models. We show
the theoretical link between run lengths and the autocorrelation function
(ACF) and propose four possible distance metrics for comparing two run
length histograms: Euclidean distance, the Gower statistic, likelihood ratio
and dynamic time warping. We demonstrate through classification experi-
ments with a 1 nearest neighbour classifier that dynamic time warping has
the greatest discriminatory power. We then compare the run length trans-
form (RL) with using the AR parameters fitted with the Durbin-Levinson
recursions, the Fourier transform (FFT) and the ACF. We show that, when
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using 1-NN, the accuracy gap between RL and AR/ACF decreases as m
increases and eventually becomes insignificant. We then experiment further
with alternative classifiers and find that ACF transform actually outperforms
the AR transform, which is somewhat surprising. Finally we demonstrate
the real benefits of using RL through a time controlled experiment. RL re-
quires approximately 4 times as much data to perform as well as ACF and
AR with the most effective classifier and this is at worst constant and pos-
sibly decreasing as m increases, whereas the relative time taken to fit ACF
and AR is increasing with m.

This type of model is commonly used to model financial and engi-
neering data. We have used classification experiments to test our algorithms,
but a more natural application would be for detecting model change. Sup-
pose you have constant readings from a sensor attached to a critical machine
where variation is caused by internal noise and feedback and that the read-
ings from such a machine could be accurately modelled by a stationary AR
series. If the nature of this variation changes (for example, a spanner is
thrown into the works) it may be of critical importance to intervene quickly.
If one were to use a fitted AR model to detect a change of model based on
a comparison of all historical data against recent observations it would re-
quire fitting models to the entire data and the new data. If run lengths are
employed the previous fitted model can be quickly updated for the new data.
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