181 research outputs found

    Proof of the Equivalence Theorem in the Chiral Lagrangian Formalism

    Full text link
    A general proof of the equivalence theorem in electroweak theories with the symmetry breaking sector described by the chiral Lagrangian is given in the RξR_{\xi} gauge by means of the Ward-Takahashi identities. The precise form of the theorem contains a modification factor CmodC_{mod} associated with each external Goldstone boson similar to that in the standard model. CmodC_{mod} is exactly unity in our previously proposed renormalization scheme, {\it Scheme-II}.Comment: 10 pages, A few words have been added below eq.(22) to make our meaning more precis

    The Akulov-Volkov Lagrangian, Symmetry Currents and Spontaneously Broken Extended Supersymmetry

    Full text link
    A generalization of the Akulov-Volkov effective Lagrangian governing the self interactions of the Nambu-Goldstone fermions associated with spontaneously broken extended supersymmetry as well as their coupling to matter is presented and scrutinized. The resulting currents associated with R-symmetry, supersymmetry and space-time translations are constructed and seen to form a supermultiplet structure.Comment: 17 pages, LaTeX; Title, abstract and introduction changes, references adde

    Anomalous Gauge Interactions of the Higgs Boson: Precision Constraints and Weak Boson Scatterings

    Get PDF
    Interaction of Higgs scalar (H) with weak gauge bosons (V=W,Z) is the {\it key} to understand electroweak symmetry breaking (EWSB) mechanism. New physics effects in the HVV interactions, as predicted by models of compositeness, supersymmetry and extra dimensions, can be formulated as anomalous couplings via a generic effective Lagrangian. We first show that the existing electroweak precision data already impose nontrivial indirect constraints on the anomalous HVV couplings. Then, we systematically study VV --> VV scatterings in the TeV region, via Gold-plated pure leptonic decay modes of the weak bosons. We demonstrate that, even for a light Higgs boson in the mass range 115GeV < m_H < 300GeV, this process can directly probe the anomalous HVV interactions at the LHC with an integrated luminosity of 300fb^{-1}, which further supports the ``No-Lose'' theorem for the LHC to uncover the EWSB mechanism. Comparisons with the constraints from measuring the cross section of VH associate production and the Higgs boson decay width are also given.Comment: Version in Phys. Lett. B (v3: minor typos removed, v2,v4: fix Latex top-margin

    The Origin of Space-Time as WW Symmetry Breaking in String Theory

    Get PDF
    Physics in the neighbourhood of a space-time metric singularity is described by a world-sheet topological gauge field theory which can be represented as a twisted N=2N=2 superconformal Wess-Zumino model with a W1+∞⊗W1+∞W_{1+\infty} \otimes W_{1+\infty} bosonic symmetry. The measurable WW-hair associated with the singularity is associated with Wilson loop integrals around gauge defects. The breaking of W1+∞W_{1+\infty} ⊗\otimes W1+∞W_{1+\infty} →\rightarrow W1+∞W_{1+\infty} is associated with expectation values for open Wilson lines that make the metric non-singular away from the singularity. This symmetry breaking is accompanied by massless discrete `tachyon' states that appear as leg poles in SS-matrix elements. The triviality of the SS-matrix in the high-energy limit of the c=1c=1 string model, after renormalisation by the leg pole factors, is due to the restoration of double WW-symmetry at the singularity.Comment: 13 page

    Equivalence Theorem and Probing the Electroweak Symmetry Breaking Sector

    Full text link
    We examine the Lorentz non-invariance ambiguity in longitudinal weak-boson scatterings and the precise conditions for the validity of the Equivalence Theorem (ET). {\it Safe} Lorentz frames for applying the ET are defined, and the intrinsic connection between the longitudinal weak-boson scatterings and probing the symmetry breaking sector is analyzed. A universal precise formulation of the ET is presented for both the Standard Model and the Chiral Lagrangian formulated Electro-Weak Theories. It is shown that in electroweak theories with strongly interacting symmetry breaking sector, the longitudinal weak-boson scattering amplitude {\it under proper conditions} can be replaced by the corresponding Goldstone-boson scattering amplitude in which all the internal weak-boson lines and fermion loops are ignored.Comment: 20 pages, in LaTeX, to appear in Phys. Rev. D (1995). A few minor corrections were made to clarify our viewpoint of the Equivalence Theorem and compare our conclusion with those in the literatur

    1<i>s</i>2<i>p</i> resonant inelastic X-ray scattering combined dipole and quadrupole analysis method

    Get PDF
    In this study an analysis strategy towards using the resonant inelastic X-ray scattering (RIXS) technique more effectively compared with X-ray absorption spectroscopy (XAS) is presented. In particular, the question of when RIXS brings extra information compared with XAS is addressed. To answer this question the RIXS plane is analysed using two models: (i) an exciton model and (ii) a continuum model. The continuum model describes the dipole pre-edge excitations while the exciton model describes the quadrupole excitations. Applying our approach to the experimental 1s2p RIXS planes of VO2 and TiO2, it is shown that only in the case of quadrupole excitations being present is additional information gained by RIXS compared with XAS. Combining this knowledge with methods to calculate the dipole contribution in XAS measurements gives scientists the opportunity to plan more effective experiments.</jats:p

    Viable Supersymmetry and Leptogenesis with Anomaly Mediation

    Get PDF
    The seesaw mechanism that explains the small neutrino masses comes naturally with supersymmetric (SUSY) grand unification and leptogenesis. However, the framework suffers from the SUSY flavor and CP problems, and has a severe cosmological gravitino problem. We propose anomaly mediation as a simple solution to all these problems, which is viable once supplemented by the D-terms for U(1)_Y and U(1)_{B-L}. Even though the right-handed neutrino mass explicitly breaks U(1)_{B-L} and hence reintroduces the flavor problem, we show that it lacks the logarithmic enhancement and poses no threat to the framework. The thermal leptogenesis is then made easily consistent with the gravitino constraint.Comment: 5 pages, one figure, uses Revtex4; Discussion on the upper bound on the LSP mass added. The version published in PR

    S-matrices for Perturbed N=2 Superconformal Field Theory from quantum groups

    Full text link
    S-matrices for integrable perturbations of N=2N=2 superconformal field theories are studied. The models we consider correspond to perturbations of the coset theory Gk×Hg−h/Hk+g−hG_k \times H_{g-h} /H_{k+g-h} . The perturbed models are closely related to G^\hat G-affine Toda theories with a background charge tuned to HH. Using the quantum group restriction of the affine Toda theories we derive the S-matrix.Comment: 29 pages 2 figure
    • …
    corecore