3 research outputs found

    Calculations of direct photon emission in Heavy Ion Collisions at \sqrt{s_NN} = 200 GeV

    Full text link
    Direct photon emission in heavy-ion collisions is calculated within a relativistic micro+macro hybrid model and compared to the microscopic transport model UrQMD. In the hybrid approach, the high-density part of the collision is calculated by an ideal 3+1-dimensional hydrodynamic calculation, while the early (pre-equilibrium-) and late (rescattering-) phase are calculated with the transport model. We study both models with Au+Au-collisions at \sqrt{s_NN} = 200 GeV and compare the results to experimental data published by the PHENIX collaboration

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include
    corecore