61 research outputs found

    Atrial and placental melanoma metastasis: a case report and literature review

    Get PDF
    Malignant melanoma can metastasize to virtually any organ of the body. The aggressiveness is determined by the primary site, depth of dermal invasion, presence or absence of ulceration, lymphovascular infiltration and regional lymph node involvement. We report a case of a pregnant woman with a previous history of stage 3 melanoma who presented with cardiac metastasis and placental melanoma infiltration. A review of literature on cardiac and placental involvement of melanoma is also provided

    Surface-Enhanced Nitrate Photolysis on Ice

    Get PDF
    Heterogeneous nitrates photolysis is the trigger for many chemical processes occurring in the polar boundary layer and is widely believed to occur in a quasi-liquid layer (QLL) at the surface of ice. The dipole forbidden character of the electronic transition relevant to boundary layer atmospheric chemistry and the small photolysis/photoproducts quantum yields in ice (and in water) may confer a significant enhancement and interfacial specificity to this important photochemical reaction at the surface of ice. Using amorphous solid water films at cryogenic temperatures as models for the disordered interstitial air/ice interface within the snowpack suppresses the diffusive uptake kinetics thereby prolonging the residence time of nitrate anions at the surface of ice. This approach allows their slow heterogeneous photolysis kinetics to be studied providing the first direct evidence that nitrates adsorbed onto the first molecular layer at the surface of ice are photolyzed more effectively than those dissolved within the bulk. Vibrational spectroscopy allows the ~3-fold enhancement in photolysis rates to be correlated with the nitrates’ distorted intramolecular geometry thereby hinting at the role played by the greater chemical heterogeneity in their solvation environment at the surface of ice than in the bulk. A simple 1D kinetic model suggests 1-that a 3(6)-fold enhancement in photolysis rate for nitrates adsorbed onto the ice surface could increase the photochemical NO[subscript 2] emissions from a 5(8) nm thick photochemically active interfacial layer by 30%(60)%, and 2-that 25%(40%) of the NO[subscript 2] photochemical emissions to the snowpack interstitial air are released from the top-most molecularly thin surface layer on ice. These findings may provide a new paradigm for heterogeneous (photo)chemistry at temperatures below those required for a QLL to form at the ice surface

    IL-1α Mediated Chorioamnionitis Induces Depletion of FoxP3+ Cells and Ileal Inflammation in the Ovine Fetal Gut

    Get PDF
    Endotoxin induced chorioamnionitis increases IL-1 and provokes an inflammatory response in the fetal ileum that interferes with intestinal maturation. In the present study, we tested in an ovine chorioamnionitis model whether IL-1 is a major cytokine driving the inflammatory response in the fetal ileum.Sheep bearing singleton fetuses received a single intraamniotic injection of recombinant ovine IL-1α at 7, 3 or 1 d before caesarian delivery at 125 days gestational age (term = 150 days).3 and 7 d after IL-1α administration, intestinal mRNA levels for IL-4, IL-10, IFN-γ and TNF-α were strongly elevated. Numbers of CD3+ and CD4+ T-lymphocytes and myeloidperoxidase+ cells were increased whereas FoxP3+ T-cells were detected at low frequency. This increased proinflammatory state was associated with ileal mucosal barrier loss as demonstrated by decreased levels of the intestinal fatty acid binding protein and disruption of the tight junctional protein ZO-1.Intraamniotic IL-1α causes an acute detrimental inflammatory response in the ileum, suggesting that induction of IL-1 is a critical element in the pathophysiological effects of endotoxin induced chorioamnionitis. A disturbed balance between T-effector and FoxP3+ cells may contribute to this process

    Formation of reactive nitrogen oxides from urban grime photochemistry

    No full text
    Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to “urban grime” films. HNO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> are important sinks for NO<sub><i>x</i></sub> in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NO<sub><i>x</i></sub> from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films

    Organic Composition, Chemistry, and Photochemistry of Urban Film in Leipzig, Germany

    No full text
    In polluted urban environments, windows and building surfaces are coated with a complex film of chemicals. Despite its high surface-to-volume ratio and direct exposure to sunlight, few studies have directly investigated the role that this “urban film” may play in promoting the chemistry and photochemistry of semivolatile organic species contained within it. Here, we report results from a field investigation of the organic composition of urban film and particulate matter (PM<sub>10</sub>) samples collected at an urban site in Leipzig, Germany, in which we provide clear evidence for the influence of anthropogenic processes on film composition. In this study, we find that the ratio of water-soluble organic carbon (WSOC) to the total ionic content of film samples decreases with atmospheric exposure time, which suggests that urban film growth proceeds first via the condensation of semivolatile species, and that the coating thus formed enhances the dry deposition of particles. Further, we find that the polycyclic aromatic hydrocarbon (PAH) abundance profiles in light-exposed films are different from those in films collected under light-shielded conditions, which represents the first direct evidence that urban films serve as a photochemical sink for semivolatile organic pollutants. Finally, we find that the PAH and <i>n</i>-alkane profiles of urban film samples differ substantially from colocated PM<sub>10</sub> samples, which we suggest reflects both the contribution of settled coarse particulate matter to the overall film composition and the influence of in-film oxidative processes. Together, these results highlight the unique reactive environment afforded by urban film and underscore the need for further studies of urban surface chemistry
    • …
    corecore