9,079 research outputs found

    Recharge unit provides for optimum recharging of battery cells

    Get PDF
    Percent recharge unit permits each cell of a rechargeable battery to be charged to a preset capacity of the cell. The unit automatically monitors and controls a rechargeable battery subjected to charge-discharge cycling tests

    Construction of torsional pendulum for cryogenic temperatures, part IV Status report, Oct. 31, 1965 - Apr. 30, 1966

    Get PDF
    Design and construction of torsion pendulum to study cryogenic properties of polymer

    Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider

    Get PDF
    While the SUSY flavor, CP and gravitino problems seem to favor a very heavy spectrum of matter scalars, fine-tuning in the electroweak sector prefers low values of superpotential mass \mu. In the limit of low \mu, the two lightest neutralinos and light chargino are higgsino-like. The light charginos and neutralinos may have large production cross sections at LHC, but since they are nearly mass degenerate, there is only small energy release in three-body sparticle decays. Possible dilepton and trilepton signatures are difficult to observe after mild cuts due to the very soft p_T spectrum of the final state isolated leptons. Thus, the higgsino-world scenario can easily elude standard SUSY searches at the LHC. It should motivate experimental searches to focus on dimuon and trimuon production at the very lowest p_T(\mu) values possible. If the neutralino relic abundance is enhanced via non-standard cosmological dark matter production, then there exist excellent prospects for direct or indirect detection of higgsino-like WIMPs. While the higgsino-world scenario may easily hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure

    Non-critical String Cosmologies

    Full text link
    Non-critical String Cosmologies are offered as an alternative to Standard Big Bang Cosmology. The new features encompassed within the dilaton dependent non-critical terms affect the dynamics of the Universe\'s evolution in an unconventional manner being in agreement with the cosmological data. Non-criticality is responsible for a late transition to acceleration at redshifts z=0.2. The role of the uncoupled rolling dilaton to relic abundance calculations is discussed. The uncoupled rolling dilaton dilutes the neutralino relic densities in supersymmetric theories by factors of ten, relaxing considerably the severe WMAP Dark Matter constraints, while at the same time leaves almost unaffected the baryon density in agreement with primordial Nucleosynthesis.Comment: 16 pages, 7 figures, conference tal

    The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    Get PDF
    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m1/2m_{1/2} is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale McM_c beyond the GUT scale, and that additional renormalization group running takes place between McM_c and MGUTM_{GUT} as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. At the CERN LHC, values of m1/2=1000m_{1/2}=1000 (1160) GeV can be probed with 10 (100) fb1^{-1} of integrated luminosity, corresponding to a reach in terms of mtgm_{\tg} of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely only be differentiated at a linear e+ee^+e^- collider with sufficient energy to produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure

    Theoretical evaluation of rigid baffles in the suppression of combustion instability

    Get PDF
    An analytical technique for the prediction of the effects of rigid baffles on the stability of liquid propellant combustors is presented. This analysis employs both two and three dimensional combustor models characterized by concentrated combustion sources at the chamber injector and a constant Mach number nozzle. An eigenfunction-matching method is used to solve the linearized partial differential equations describing the unsteady flow field for both models. Boundary layer corrections to this unsteady flow are in a mechanical energy dissipation model to evaluate viscous and turbulence effects within the flow. An integral instability relationship is then employed to predict the decay rate of the oscillations. Results of this analysis agree qualitatively with experimental observations and show that sufficient dissipation exists to indicate that the proper mechanism of baffle damping is a fluid dynamic loss. The response of the dissipation model to varying baffle blade length, mean flow Mach number, oscillation amplitude, baffle configuration, and oscillation mode is examined

    Trileptons from Chargino-Neutralino Production at the CERN Large Hadron Collider

    Full text link
    We study direct production of charginos and neutralinos at the CERN Large Hadron Collider. We simulate all channels of chargino and neutralino production using ISAJET 7.07. The best mode for observing such processes appears to be pp\to\tw_1\tz_2\to 3\ell +\eslt. We evaluate signal expectations and background levels, and suggest cuts to optimize the signal. The trilepton mode should be viable provided m_{\tg}\alt 500-600~GeV; above this mass, the decay modes \tz_2\to\tz_1 Z and \tz_2\to H_{\ell}\tz_1 become dominant, spoiling the signal. In the first case, the leptonic branching fraction for ZZ decay is small and additional background from WZWZ is present, while in the second case, the trilepton signal is essentially absent. For smaller values of mtgm_{\tg}, the trilepton signal should be visible above background, especially if μmtg|\mu|\simeq m_{\tg} and m_{\tell}\ll m_{\tq}, in which case the leptonic decays of \tz_2 are enhanced. Distributions in dilepton mass m(ˉ)m(\ell\bar{\ell}) can yield direct information on neutralino masses due to the distribution cutoff at m_{\tz_2}-m_{\tz_1}. Other distributions that may lead to an additional constraint amongst the chargino and neutralino masses are also examined.Comment: preprint nos. FSU-HEP-940310 and UH-511-786-94, 13 pages (REVTEX) plus 7 uuencoded figures attache

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    Neutralino Decays at the CERN LHC

    Full text link
    We study the distribution of lepton pairs from the second lightest neutralino decay \tchi^0_2\to\tchi^0_1 l^+l^-. This decay mode is important to measure the mass difference between \tchi^0_2 and the lightest neutralino \tchi^0_1, which helps to determine the parameters of the minimal supersymmetric standard model at the CERN LHC. We found that the decay distribution strongly depends on the values of underlying MSSM parameters. For some extreme cases, the amplitude near the end point of the lepton invariant mass distribution can be suppressed so strongly that one needs the information of the whole m_{ll} distribution to extract m_{\tchi^0_2}-m_{\tchi^0_1}. On the other hand, if systematic errors on the acceptance can be controlled, this distribution can be used to constrain slepton masses and the Z\tchi^0_2\tchi^0_1 coupling. Measurements of the velocity distribution of \tchi^0_2 from samples near the end point of the m_{ll} distribution, and of the asymmetry of the p_T of leptons, would be useful to reduce the systematic errors.Comment: 23 pages, latex2e, 9 figures, minor change, accepted to PR

    Resonant sneutrino production in Supersymmetry with R-parity violation at the LHC

    Full text link
    The resonant production of sneutrinos at the LHC via the R-parity violating couplings \l '_{ijk} L_i Q_j D^c_k is studied through its three-leptons signature. A detailed particle level study of signal and background is performed using a fast simulation of the ATLAS detector. Through the full reconstruction of the cascade decay, a model-independent and precise measurement of the masses of the involved sparticles can be performed. Besides, this signature can be detected for a broad class of supersymmetric models, and for a wide range of values of several \l '_{ijk} coupling constants. Within the MSSM, the production of a 900 GeV sneutrino for λ211>0.05\lambda^{\prime}_{211}>0.05, and of a 350 GeV sneutrino for λ211>0.01\lambda^{\prime}_{211}>0.01 can be observed within the first three years of LHC running.Comment: 33 pages, 19 figures, Latex fil
    corecore