244 research outputs found

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde

    Neutralino relic density in supersymmetric GUTs with no-scale boundary conditions above the unification scale

    Full text link
    We investigate SU(5) and SO(10) GUTs with vanishing scalar masses and trilinear scalar couplings at a scale higher than the unification scale. The parameter space of the models, further constrained by b-\tau Yukawa coupling unification, consists of a common gaugino mass and of \tan\beta. We analyze the low energy phenomenology, finding that A-pole annihilations of neutralinos and/or coannihilations with the lightest stau drive the relic density within the cosmologically preferred range in a significant region of the allowed parameter space. Implications for neutralino direct detection and for CERN LHC experiments are also discussed.Comment: 14 pages, 5 figures, JHEP style. Version accepted for publication in JHE

    Testing SUSY

    Full text link
    If SUSY provides a solution to the hierarchy problem then supersymmetric states should not be too heavy. This requirement is quantified by a fine tuning measure that provides a quantitative test of SUSY as a solution to the hierarchy problem. The measure is useful in correlating the impact of the various experimental measurements relevant to the search for supersymmetry and also in identifying the most sensitive measurements for testing SUSY. In this paper we apply the measure to the CMSSM, computing it to two-loop order and taking account of current experimental limits and the constraint on dark matter abundance. Using this we determine the present limits on the CMSSM parameter space and identify the measurements at the LHC that are most significant in covering the remaining parameter space. Without imposing the LEP Higgs mass bound we show that the smallest fine tuning (1:13) consistent with a relic density within the WMAP bound corresponds to a Higgs mass of 114±\pm2 GeV. Fine tuning rises rapidly for heavier Higgs.Comment: 12 pages, 7 figures; references added, figures updated for extended parameter space sca

    Yukawa coupling unification and non-universal gaugino mediation of supersymmetry breaking

    Full text link
    The requirement of Yukawa coupling unification highly constrains the SUSY parameter space. In several SUSY breaking scenarios it is hard to reconcile Yukawa coupling unification with experimental constraints from B(b->s gamma) and the muon anomalous magnetic moment a_mu. We show that b-tau or even t-b-tau Yukawa unification can be satisfied simultaneously with b->s gamma and a_mu in the non-universal gaugino mediation scenario. Non-universal gaugino masses naturally appear in higher dimensional grand unified models in which gauge symmetry is broken by orbifold compactification. Relations between SUSY contributions to fermion masses, b->s gamma and a_mu which are typical for models with universal gaugino masses are relaxed. Consequently, these phenomenological constraints can be satisfied simultaneously with a relatively light SUSY spectrum, compared to models with universal gaugino masses.Comment: 20 pages, 8 figures. References added. A copy of the paper with better resolution figures can be found at http://www.hep.fsu.edu/~balazs/Physics/Papers/2003

    Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order

    Get PDF
    In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum Δ=8.8\Delta=8.8 corresponding to a Higgs mass mh=114±2m_h=114\pm 2 GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find Δ=15\Delta=15 corresponding to mh=114.7±2m_h=114.7\pm 2 GeV and this rises to Δ=17.8\Delta=17.8 (mh=115.9±2m_h=115.9\pm 2 GeV) for SUSY dark matter abundance within 3σ\sigma of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mass are only marginally larger for the case SUSY dark matter is subdominant and rises to Δ=28.7\Delta=28.7 (mh=116.98±2m_h=116.98\pm 2 GeV) for the case of SUSY dark matter saturates the WMAP bound. For a Higgs mass above these values, fine tuning rises exponentially fast. The CMSSM spectrum that corresponds to minimal fine tuning is computed and provides a benchmark for future searches. It is characterised by heavy squarks and sleptons and light neutralinos, charginos and gluinos.Comment: 36 pages, 24 figure

    Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking

    Full text link
    While the constrained minimal supersymmetric standard model (CMSSM) with universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0, defined at some high energy scale (usually taken to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a relation between the trilinear and bilinear soft supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a consequence, tan(\beta) is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can introduce new parameters to the K\"ahler potential which are associated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending on the value of A_0, one may have a gravitino or a neutralino dark matter candidate. We also consider the consequences of imposing the universality conditions above the GUT scale. This GM extension provides a natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange

    Neutralino Dark Matter, b-tau Yukawa Unification and Non-Universal Sfermion Masses

    Full text link
    We study the implications of minimal non-Universal Boundary Conditions in the sfermion Soft SUSY Breaking (SSB) masses of mSUGRA. We impose asymptotic b-tau Yukawa coupling Unification and we resort to a parameterization of the deviation from Universality in the SSB motivated by the multiplet structure of SU(5) GUT. A set of cosmo-phenomenological constraints, including the recent results from WMAP, determines the allowed parameter space of the models under consideration. We highlight a new coannihilation corridor where neutralino-sbottom and neutralino-tau sneutrino-stau coannihilations significantly contribute to the reduction of the neutralino relic density.Comment: 38 pages, 27 Figures, Latex; Version accepted for publication in PR

    Flavour Violation in SUSY SU(5) GUT at Large tan beta

    Get PDF
    We study flavour violation in the minimal SUSY SU(5) GUT assuming all the third generation Yukawa couplings to be due to the renormalizable physics above GUT scale. At large tanβ,\tan\beta, as suggested by Yukawa unification in SU(5), sizable flavour violation in the left (right) slepton (down squark) sector is induced due to renormalization effects of down type Yukawa couplings between GUT and Planck scales in addition to the flavour violation in the right slepton sector. The new flavour physics contribution to KKˉ,K-\bar K, BBˉB-\bar B mixing is small but might be of phenomenological interest in the case of bsγ.b\to s\gamma. The sign of the latter contribution is the same as the sign of the dominant chargino contribution, thus making the constraints on SUSY scale coming from bsγb\to s\gamma somewhat more restrictive. The most important feature of the considered scenario is the large rate of lepton flavour violation. Given the present experimental constraints, the μeγ\mu\to e\gamma and μe\mu-e conversion branching ratios are above the sensitivity of the planned experiments unless the SUSY scale is pushed above one TeV.Comment: 22 pages, 7 figure

    Adaptive Sampling Approach to the Negative Sign Problem in the Auxiliary Field Quantum Monte Carlo Method

    Full text link
    We propose a new sampling method to calculate the ground state of interacting quantum systems. This method, which we call the adaptive sampling quantum monte carlo (ASQMC) method utilises information from the high temperature density matrix derived from the monte carlo steps. With the ASQMC method, the negative sign ratio is greatly reduced and it becomes zero in the limit Δτ\Delta \tau goes to zero even without imposing any constraint such like the constraint path (CP) condition. Comparisons with numerical results obtained by using other methods are made and we find the ASQMC method gives accurate results over wide regions of physical parameters values.Comment: 8 pages, 7 figure

    Theoretical uncertainties in sparticle mass predictions from computational tools

    Get PDF
    We estimate the current theoretical uncertainty in sparticle mass predictions by comparing several state-of-the-art computations within the minimal supersymmetric standard model (MSSM). We find that the theoretical uncertainty is comparable to the expected statistical errors from the Large Hadron Collider (LHC), and significantly larger than those expected from a future e+e- Linear Collider (LC). We quantify the theoretical uncertainty on relevant sparticle observables for both LHC and LC, and show that the value of the error is significantly dependent upon the supersymmetry (SUSY) breaking parameters. We also present the theoretical uncertainty induced in fundamental-scale SUSY breaking parameters when they are fitted from LHC measurements. Two regions of the SUSY parameter space where accurate predictions are particularly difficult are examined in detail: the large tan(beta) and focus point regimes.Comment: 22 pages, 6 figures; comment added pointing out that 2-loop QCD corrections to mt are incorrect in some of the programs investigated. We give the correct formul
    corecore