92 research outputs found

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    A quantitative analysis of complexity of human pathogen-specific CD4 T cell responses in healthy M. tuberculosis infected South Africans

    Get PDF
    Author Summary: Human pathogen-specific immune responses are tremendously complex and the techniques to study them ever expanding. There is an urgent need for a quantitative analysis and better understanding of pathogen-specific immune responses. Mycobacterium tuberculosis (Mtb) is one of the leading causes of mortality due to an infectious agent worldwide. Here, we were able to quantify the Mtb-specific response in healthy individuals with Mtb infection from South Africa. The response is highly diverse and 66 epitopes are required to capture 80% of the total reactivity. Our study also show that the majority of the identified epitopes are restricted by multiple HLA alleles. Thus, technical advances are required to capture and characterize the complete pathogen-specific response. This study demonstrates further that the approach combining identified epitopes into "megapools" allows capturing a large fraction of the total reactivity. This suggests that this technique is generally applicable to the characterization of immunity to other complex pathogens. Together, our data provide for the first time a quantitative analysis of the complex pathogen-specific T cell response and provide a new understanding of human infections in a natural infection setting

    Off-target effects of bacillus Calmette–Guérin vaccination on immune responses to SARS-CoV-2: implications for protection against severe COVID-19

    Full text link
    Background and objectives: Because of its beneficial off-target effects against non-mycobacterial infectious diseases, bacillus Calmette–Guérin (BCG) vaccination might be an accessible early intervention to boost protection against novel pathogens. Multiple epidemiological studies and randomised controlled trials (RCTs) are investigating the protective effect of BCG against coronavirus disease 2019 (COVID-19). Using samples from participants in a placebo-controlled RCT aiming to determine whether BCG vaccination reduces the incidence and severity of COVID-19, we investigated the immunomodulatory effects of BCG on in vitro immune responses to SARS-CoV-2. Methods: This study used peripheral blood taken from participants in the multicentre RCT and BCG vaccination to reduce the impact of COVID-19 on healthcare workers (BRACE trial). The whole blood taken from BRACE trial participants was stimulated with γ-irradiated SARS-CoV-2-infected or mock-infected Vero cell supernatant. Cytokine responses were measured by multiplex cytokine analysis, and single-cell immunophenotyping was made by flow cytometry. Results: BCG vaccination, but not placebo vaccination, reduced SARS-CoV-2-induced secretion of cytokines known to be associated with severe COVID-19, including IL-6, TNF-α and IL-10. In addition, BCG vaccination promoted an effector memory phenotype in both CD4+ and CD8+ T cells, and an activation of eosinophils in response to SARS-CoV-2. Conclusions: The immunomodulatory signature of BCG’s off-target effects on SARS-CoV-2 is consistent with a protective immune response against severe COVID-19

    The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    Get PDF
    BACKGROUND: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    corecore