593 research outputs found
Transient Local Bone Remodeling Effects of rhBMP-2 in an Ovine Interbody Spine Fusion Model
Background: Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a powerful osteoinductive morphogen capable of stimulating the migration of mesenchymal stem cells (MSCs) to the site of implantation and inducing the proliferation and differentiation of these MSCs into osteoblasts. Vertebral end-plate and vertebral body resorption has been reported after interbody fusion with high doses of rhBMP-2. In this study, we investigated the effects of 2 rhBMP-2 doses on peri-implant bone resorption and bone remodeling at 7 time points in an end-plate-sparing ovine interbody fusion model. Methods: Twenty-one female sheep underwent an end-plate-sparing discectomy followed by interbody fusion at L2-L3 and L4-L5 using a custom polyetheretherketone (PEEK) interbody fusion device. The PEEK interbody device was filled with 1 of 2 different doses of rhBMP-2 on an absorbable collagen sponge (ACS): 0.13 mg (1·) or 0.90 mg (7·). Bone remodeling and interbody fusion were assessed via high-resolution radiography and histological analyses at 1, 2, 3, 4, 8, 12, and 20 weeks postoperatively. Results: Peri-implant bone resorption peaked between 3 and 8 weeks in both the 1· and the 7· rhBMP-2/ACS-dose group. Osteoclastic activity and corresponding peri-implant bone resorption was dose-dependent, with moderate-tomarked resorption at the 7·-dose level and less resorption at the 1·-dose level. Both dose (p \u3c 0.0007) and time (p \u3c 0.0025) affected bone resorption significantly. Transient bone-resorption areas were fully healed by 12 weeks. Osseous bridging was seen at all but 1 spinal level at 12 and at 20 weeks. Conclusions: In the ovine end-plate-sparing interbody fusion model, rhBMP-2 dose-dependent osteoclastic resorption is a transient phenomenon that peaks at 4 weeks postoperatively. Clinical Relevance: Using the U.S. Food and Drug Administration (FDA)-approved rhBMP-2 concentration and matching the volume of rhBMP-2/ACS with the volume of desired bone formation within the interbody construct may limit the occurrence of transient bone resorption
Early ART in Acute HIV-1 Infection: Impact on the B-Cell Compartment
HIV-1 infection induces B cell defects, not fully recovered upon antiretroviral therapy (ART). Acute infection and the early start of ART provide unique settings to address the impact of HIV on the B cell compartment. We took advantage of a cohort of 21 seroconverters, grouped according to the presence of severe manifestations likely mediated by antibodies or immune complexes, such as Guillain-Barré syndrome and autoimmune thrombocytopenic purpura, with a follow-up of 8 weeks upon effective ART. We combined B and T cell phenotyping with serum immunoglobulin level measurement and quantification of sj-KRECs and ΔB to estimate bone marrow output and peripheral proliferative history of B cells, respectively. We observed marked B cell disturbances, notably a significant expansion of cells expressing low levels of CD21, in parallel with markers of both impaired bone marrow output and increased peripheral B cell proliferation. This B cell dysregulation is likely to contribute to the severe immune-mediated conditions, as attested by the higher serum IgG and the reduced levels of sj-KRECs with increased ΔB in these individuals as compared to those patients with mild disease. Nevertheless, upon starting ART, the dynamic of B cell recovery was not distinct in the two groups, featuring both persistent alterations by week 8. Overall, we showed for the first time that acute HIV-1 infection is associated with decreased bone marrow B cell output assessed by sj-KRECs. Our study emphasizes the need to intervene in both bone marrow and peripheral responses to facilitate B cell recovery during acute HIV-1 infection.info:eu-repo/semantics/publishedVersio
The HADES Tracking System
The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is
formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in
total about 30 square meter of active area. Low multiple scattering in the in
total four planes of drift chambers before and after the magnetic field is
ensured by using helium-based gas mixtures and aluminum cathode and field
wires. First in-beam performance results are contrasted with expectations from
simulations. Emphasis is placed on the energy loss information, exploring its
relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on
Instrumentation, Vienna, February 2004, to be published in NIM A (special
issue
Deep breathing couples CSF and venous flow dynamics
Venous system pathologies have increasingly been linked to clinically relevant disorders of CSF circulation whereas the exact coupling mechanisms still remain unknown. In this work, flow dynamics of both systems were studied using real-time phase-contrast flow MRI in 16 healthy subjects during normal and forced breathing. Flow evaluations in the aqueduct, at cervical level C3 and lumbar level L3 for both the CSF and venous fluid systems reveal temporal modulations by forced respiration. During normal breathing cardiac-related flow modulations prevailed, while forced breathing shifted the dominant frequency of both CSF and venous flow spectra towards the respiratory component and prompted a correlation between CSF and venous flow in the large vessels. The average of flow magnitude of CSF was increased during forced breathing at all spinal and intracranial positions. Venous flow in the large vessels of the upper body decreased and in the lower body increased during forced breathing. Deep respiration couples interdependent venous and brain fluid flow—most likely mediated by intrathoracic and intraabdominal pressure changes. Further insights into the driving forces of CSF and venous circulation and their correlation will facilitate our understanding how the venous system links to intracranial pressure regulation and of related forms of hydrocephalus
Communication, social capital and workplace health management as determinants of the innovative climate in German banks
The present study aims to measure the determinants of the innovative climate in German banks with a focus on workplace health management (WHM). We analyze the determinants of innovative climate with multiple regressions using a dataset based on standardized telephone interviews conducted with health promotion experts from 198 randomly selected German banks. The regression analysis provided a good explanation of the variance in the dependent variable (RA(2)A = 55%). Communication climate (beta = 0.55; p < 0.001), social capital (beta = 0.21; p < 0.01), the establishment of a WHM program (beta = 0.13; p < 0.05) as well as company size (beta = 0.15; p < 0.01) were found to have a significant impact on an organization's innovative climate. In order to foster an innovation-friendly climate, organizations should establish shared values. An active step in this direction involves strengthening the organizations' social capital and communication climate through trustworthy management decisions such as the implementation of a WHM program
Acute HIV-1 and SARS-CoV-2 infections Share Slan+ Monocyte Depletion - evidence from an hyperacute HIV-1 case report
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Monocytes are key modulators in acute viral infections, determining both inflammation and development of specific B- and T-cell responses. Recently, these cells were shown to be associated to different SARS-CoV-2 infection outcome. However, their role in acute HIV-1 infection remains unclear. We had the opportunity to evaluate the mononuclear cell compartment in an early hyper-acute HIV-1 patient in comparison with an untreated chronic HIV-1 and a cohort of SARS-CoV-2 infected patients, by high dimensional flow cytometry using an unsupervised approach. A distinct polarization of the monocyte phenotype was observed in the two viral infections, with maintenance of pro-inflammatory M1-like profile in HIV-1, in contrast to the M2-like immunosuppressive shift in SARS-CoV-2. Noticeably, both acute infections had reduced CD14low/-CD16+ non-classical monocytes, with depletion of the population expressing Slan (6-sulfo LacNac), which is thought to contribute to immune surveillance through pro-inflammatory properties. This depletion indicates a potential role of these cells in acute viral infection, which has not previously been explored. The inflammatory state accompanied by the depletion of Slan+ monocytes may provide new insights on the critical events that determine the rate of viral set-point in acute HIV-1 infection and subsequent impact on transmission and reservoir establishment.This work was funded by the following grants from Fundação para a Ciência e a Tecnologia (FCT), Portugal, through “Apoio Especial Research4COVID-19”, project numbers 125 to S.M.F. and 803 to A.C.T. Fellowships funded by FCT (Doctorates4COVID-19, 2020.10202.BD), and Janssen-Cilag Farmacêutica were received by A.M.C.G. and G.B.F., respectively.info:eu-repo/semantics/publishedVersio
Biallelic variants in ADAMTS15 cause a novel form of distal arthrogryposis
Purpose We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. Methods Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. Results We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. Conclusion In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome
Recommended from our members
Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sNN= 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μB> 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter
- …