39 research outputs found

    Analysis of non-conjugated steroids in water using paper spray mass spectrometry

    Get PDF
    A novel strategy for the direct analysis of non-conjugated steroids in water using paper spray mass spectrometry (PS-MS) has been developed. PS-MS was used in the identification and quantification of non-conjugated (free) steroids in fish tank water samples. Data shown herein indicates that individual amounts of free steroids can be detected in aqua as low as; 0.17 ng/µL, 0.039 ng/µL, 0.43 ng/µL, 0.0076 ng/µL for aldosterone, corticosterone, cortisol, and β-estrone, respectively, and with an average relative standard deviation of ca. < 10% in the positive ion mode using PS-MS/MS. Direct detection of free steroids in a raw water mixture, from aquaculture, without prior sample preparation is demonstrated. The presence of free steroids released in fish water samples was confirmed via tandem mass spectrometry using collision-induced dissociation. This approach shows promise for rapid and direct water quality monitoring to provide a holistic assessment of non-conjugated steroids in aqua

    Direct Analysis and Quantification of Metaldehyde in Water using Reactive Paper Spray Mass Spectrometry

    No full text
    Metaldehyde is extensively used worldwide as a contact and systemic molluscicide for controlling slugs and snails in a wide range of agricultural and horticultural crops. Contamination of surface waters due to run-off, coupled with its moderate solubility in water, has led to increased concentration of the pesticide in the environment. In this study, for the first time, rapid analysis (<~1 minute) of metaldehyde residues in water is demonstrated using paper spray mass spectrometry (PS-MS). The observed precursor molecular ions of metaldehyde were confirmed from tandem mass spectrometry (MS/MS) experiments by studying the fragmentation patterns produced via collision-induced dissociation. The signal intensity ratios of the most abundant MS/MS transitions for metaldehyde (177 → 149 for protonated ion) and atrazine (221 → 179) were found to be linear in the range 0.01 to 5 ng/mL. Metaldehyde residues were detectable in environmental water samples at low concentration (LOD < 0.1 ng/mL using reactive PS-MS), with a relative standard deviation <10% and an R(2) value >0.99, without any pre-concentration/separation steps. This result is of particular importance for environmental monitoring and water quality analysis providing a potential means of rapid screening to ensure safe drinking water
    corecore