29 research outputs found

    Development of nine microsatellite loci for <i>Trypanosoma lewisi</i>, a potential human pathogen in Western Africa and South-East Asia, and preliminary population genetics analyses

    Get PDF
    This manuscript (word file), presents results obtained while developing microsatellite markers for the parasite T. lewisi and the first population genetics data analysis for this species. This parasite is found mainly in rodents (rats) and is transmitted by fleas. To this respect, it shares the same cycle as other human pathogens (plague, murine typhus) The first results suggest that the subpopulation unit for these parasite populations may be found at very small scales, neighborhoods of cities, and probably even at lower scales (e.g. homes). Data also suggest an operational life cycle (generation time) of 1-2 months, as for other trypanosome species. The excel file contains all raw data. These results, even if they need being refined, but already shed some light on the ecology of this host-parasite-vector system, together with the ecology of other pathogenic agents sharing the same cycle

    Molecular prevalence, genetic characterization and patterns of Toxoplasma gondii infection in domestic small mammals from Cotonou, Benin

    Get PDF
    Toxoplasmosis, one of the most prevalent parasitic infections in humans and animals, is caused by the intracellular protozoan parasite Toxoplasma gondii. Small mammals play a key role as intermediate reservoir hosts in the maintenance of the T. gondii life cycle. In this study, we estimated the molecular prevalence and provide genetic diversity data for T. gondii in 632 small mammals sampled in four areas of Cotonou city, Benin. Both the brain and heart of each individual were screened through T. gondii-targeting qPCR, and positive samples were then genotyped using a set of 15 T. gondii-specific microsatellites. Prevalence data were statistically analyzed in order to assess the relative impact of individual host characteristics, spatial distribution, composition of small mammal community, and urban landscape features. An overall T. gondii molecular prevalence of 15.2% was found and seven genotypes, all belonging to the Africa 1 lineage, could be retrieved from the invasive black rat Rattus rattus and the native African giant shrew Crocidura olivieri. Statistical analyses did not suggest any significant influence of the environmental parameters used in this study. Rather, depending on the local context, T. gondii prevalence appeared to be associated either with black rat, shrew, or mouse abundance or with the trapping period. Overall, our results highlight the intricate relationships between biotic and abiotic factors involved in T. gondii epidemiology and suggest that R. rattus and C. olivieri are two competent reservoirs for the Africa 1 lineage, a widespread lineage in tropical Africa and the predominant lineage in Benin

    Genetic Characterization of Seoul Virus in the Seaport of Cotonou, Benin

    Get PDF
    Seoul virus is a zoonotic pathogen carried by the brown rat Rattus norvegicus. Information on its circulation in Africa is limited. In this study, the virus was detected in 37.5% of brown rats captured in the Autonomous Port of Cotonou, Benin. Phylogenetic analyses place this virus in Seoul virus lineage 7.Peer reviewe

    Two new African siblings of Pulveroboletus ravenelii (Boletaceae)

    Get PDF
    This paper sorts out the taxonomy of species affiliated with Pulveroboletus ravenelii in the Guineo-soudanian and Zambezian woodlands of Africa. Morphological and genetic characters of African Pulveroboletus collections were studied and compared to those of North American and Asian species. A phylogenetic analysis showed that the African specimens form a subclade, sister to the Asian and American taxa. Although clamp connections have previously never been reported from Pulveroboletus, all specimens of the African subclade show very small clamp connections. Two new African species, Pulveroboletus africanus sp. nov. and P. sokponianus sp. nov., are described and illustrated. Comments concerning morphology and identification, as well as distribution and ecology, are given for both species

    Pathogenic Leptospira in commensal small mammals from the extensively urbanized coastal Benin

    No full text
    International audienceLeptospirosis is caused by spirochete bacteria of the genus Leptospira that aïŹ€ect one million and kill 60,000 persons annually in the world, who get infected through environmental mammal-excreted (notably rodent) pathogens. Using qPCR and DNA sequencing approaches, we here examine Leptospira occurrence and diversity in 971 commensal small mammals in urban and peri-urban habitats from south Benin, where socio-environmental conditions are favorable for human contamination. Prevalence reached 12.9% on average, but showed very important variations in both space and time, thus pointing toward a role of local processes in the maintenance and circulation of rodent-borne leptospires in the area. Prevalence peaks may occur during or one month after moderate (100-200 mm) monthly rainfall, suggesting that rodent-borne leptospires may be more prevalent when standing waters are present, but not at their highest levels (i.e., floods). However, this pattern will have to be confirmed through proper diachronic analysis. Finally, an incomplete but significant host-specificity was observed, with L. kirschneri retrieved only in African shrews, and the invasive Rattus norvegicus and the native Mastomys natalensis preferentially infected by L. interrogans and L. borgpeterseni, respectively. Our study highlights the urgent need for investigations on human leptospirosis in the extensively urbanized Abidjan–Lagos corridor

    Fine‐scale prevalence and genetic diversity of urban small mammal‐borne pathogenic Leptospira in Africa: A spatiotemporal survey within Cotonou, Benin

    No full text
    International audienceLeptospirosis is a zoonotic disease that is caused by spirochete bacteria of the genus Leptospira. Around the world, one million people each year are infected, leading to 60,000 deaths. Infection occurs through contact with environmental pathogens excreted by mammals (notably rodents). Data on Leptospira and leptospirosis in Africa are rather scarce, especially in urban habitats though these appear to be favourable environments for the pathogen circulation and human contamination. Using qPCR, DNA sequencing as well as MST/VNTR approaches, we examined Leptospira occurrence and genetic diversity in 779 commensal small mammals that were sampled over 2 years in the city centre of Cotonou, Benin, from three neighbourhoods with contrasting socio-environmental conditions. Overall prevalence reached 9.1%. However, very marked variations in both space and time were observed, with local peaks of high prevalence but no clear seasonal pattern. In most sites that could be regularly sampled, Leptospira-positive rodents were found at least once, thus confirming the widespread circulation of the pathogen within small mammal communities of Cotonou. Interestingly, an unusual diversity of small mammal-borne Leptospira species and genotypes was retrieved, with up to four species and three different genovars within the same neighbourhood, and even instances of two species and two genovars identified simultaneously within the same household. To our knowledge, such a high genetic diversity has never been described at such a fine scale, a fortiori in Africa and, more generally, within an urban environment. Altogether, our results underline that much remains unknown about leptospirosis as well as the associated infectious risk in African cities where the disease may be massively over-looked

    Biological invasions in international seaports: a case study of exotic rodents in Cotonou

    No full text
    All datasets used for this study are entirely deposited in the Small Mammal Collection at the IRD/CBGP (https://doi.org/10.15454/WWNUPO) as well as at URIB/LARBA/EPAC. The datasets are available upon request.International audienceBlack rat (Rattus rattus), brown rat (Rattus norvegicus), and house mouse (Mus musculus) are known to be among the most common anthropophilic rodent species in cities worldwide. These species are responsible for the destruction of domestic and industrial materials, considerable damage to food stocks as well as zoonotic pathogens circulation and transmission to humans and animals. These invasive species have disseminated in all continents following human-mediated exchanges, especially maritime transports. In particular, seaports appear as privileged rats and mice's entry points into new regions, thus making them international regulations' priorities for rodent surveillance and management. Yet, studies on seaport rodents are rare; in particular, investigations on their genetic structure are almost inexistent, thus precluding science-guided interventions. In order to fill such a gap, our study focused on the population genetics of R. rattus, R. norvegicus and M. musculus in the Autonomous Port of Cotonou, Benin. Nine different sites were surveyed for three years. In total, 366 R. rattus, 188 R. norvegicus and 244 M. musculus were genotyped using 18 microsatellites, 16 microsatellites and 17 microsatellites, respectively. Our results show very well-structured genetic clusters in all three species as well as limited impacts of rodent control campaigns. Using comparisons with genotypes from other European, Asian and African countries, we suggest for the first time that settlement of newly introduced individuals may be a rare event. Implications in terms of management units and control and monitoring are discussed

    Paxilloboletus gen. nov., a new lamellate bolete genus from tropical Africa

    No full text
    This study presents Paxilloboletus gen. nov., a new lamellate bolete genus represented by two tropical African species, Paxilloboletus africanus sp. nov. and Paxilloboletus latisporus sp. nov. Although the new taxa strongly resemble Paxillus (Paxillaceae), they lack clamp connections and form a separate generic clade within the Boletaceae phylogeny. The new species are lookalikes, morphologically only separable by their spore morphology. Descriptions and illustrations of the new genus and new species are given, as well as comments on ecology, distribution, and morphological differences with other gilled Boletaceae

    Genetic diversity and origins of invasive black rats (Rattus rattus) in Benin, West Africa

    No full text
    Black rats (Rattus rattus) are native to the Indian subcontinent but have now colonized most continents and islands following human movements and international trade. They are involved in the circulation and transmission to humans of many zoonotic agents as well as in massive damage to food stocks and native biodiversity in the regions they have settled. This study investigates the genetic diversity and possible origins of black rats from Benin, West Africa. We sequenced the complete mitochondrial cytochrome b gene in 90 individuals from nine localities in Benin. These sequences were subsequently compared to 390 other cytochrome b haplotypes from individuals from various European, Asian, American and African localities. Nucleotide polymorphism analysis, haplotype network and maximum likelihood phylogenetic tree reconstructions showed low mitochondrial diversity in black rats from Benin. Our results also suggest at least two distinct introduction events: one introduction probably occurred during the spice trade (15th-17th century) through the Indies Road connecting Europe to Asia. Other introduction events could have occurred more recently following the intensification of globalized trade from the eighteenth century, and onwards
    corecore