324 research outputs found

    Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes

    Get PDF
    Background - Further to promoting angiogenesis, cell therapy may be an approach for cardiac regeneration. Recent studies suggest that progenitor cells can transdifferentiate into other lineages. However, the transdifferentiation potential of endothelial progenitor cells (EPCs) is unknown

    Twenty-five-year trends in incidence, angiographic appearance, and management of spontaneous coronary artery dissection

    Get PDF
    BACKGROUND Spontaneous coronary artery dissection (SCAD) has been described as an infrequent cause of acute coronary syndrome (ACS). Knowledge about the disease is still limited and SCAD might still be underdiagnosed. OBJECTIVES Trends in incidence, presentation, angiographic appearance, management, and outcomes of SCAD over 25 years were analyzed. METHODS Patients with SCAD between 1997 and 2021 at the University Hospital Zurich, Switzerland, were included. Incidences were assessed as total numbers and proportions of ACS cases. Clinical data were collected from medical records and angiographic findings were reviewed. Major adverse cardiac events (MACE) were defined as the composite of all-cause death, cardiac arrest, SCAD recurrence or progression, other myocardial infarction, and stroke. RESULTS One hundred fifty-six SCAD cases were included in this study. The incidence increased significantly in total (p < 0.001) and relative to ACS cases (p < 0.001). This was based on an increase of shorter lesions (p = 0.004), SCAD type 2 (p < 0.001), and lesions in side branches (p = 0.014), whereas lesions in the left main coronary artery and proximal segments were decreasing (p-values 0.029 and < 0.001, respectively). There was an increase in conservative therapy (p < 0.001). The rate of MACE (24%) was stable, however, there was a reduced proportion of patients with a need for intensive care treatment (p = 0.017). CONCLUSIONS SCAD represents an important entity of ACS that still might be underappreciated. The increasing incidence of SCAD is likely based on better awareness and familiarity with the disease. A lower need for intensive care treatment suggests positive effects of the increasing implementation of conservative management

    Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity

    Get PDF
    The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A

    Genetic predisposition for sudden cardiac death in myocardial ischaemia: the Arrhythmia Genetics in the NEtherlandS study

    Get PDF
    Sudden cardiac death from ventricular fibrillation during myocardial infarction is a leading cause of total and cardiovascular mortality. This multifactorial, complex condition clusters in families, suggesting a substantial genetic cause. We carried out a genomewide association study (GWAS) for sudden cardiac death, in the AGNES (Arrhythmia Genetics in the Netherlands) population, consisting of patients with (cases) and without (controls) ventricular fibrillation during a first ST-elevation myocardial infarction. The most significant association was found at chromosome 21q21 (rs2824292; odds ratio = 1.78, 95% CI 1.47–2.13, P = 3.3 × 10−10), 98 kb proximal of the CXADR gene, encoding the Coxsackie and adenovirus receptor. This locus has not previously been implicated in arrhythmia susceptibility. Further research on the mechanism of this locus will ultimately provide novel insight into arrhythmia mechanisms in this condition

    Angiotensin II and the ERK pathway mediate the induction of myocardin by hypoxia in cultured rat neonatal cardiomyocytes

    Get PDF
    Hypoxic injury to cardiomyocytes is a stress that causes cardiac pathology through cardiac-restricted gene expression. SRF (serum-response factor) and myocardin are important for cardiomyocyte growth and differentiation in response to myocardial injuries. Previous studies have indicated that AngII (angiotensin II) stimulates both myocardin expression and cardiomyocyte hypertrophy. In the present study, we evaluated the expression of myocardin and AngII after hypoxia in regulating gene transcription in neonatal cardiomyocytes. Cultured rat neonatal cardiomyocytes were subjected to hypoxia, and the expression of myocardin and AngII were evaluated. Different signal transduction pathway inhibitors were used to identify the pathway(s) responsible for myocardin expression. An EMSA (electrophoretic mobility-shift assay) was used to identify myocardin/SRF binding, and a luciferase assay was used to identify transcriptional activity of myocardin/SRF in neonatal cardiomyocytes. Both myocardin and AngII expression increased after hypoxia, with AngII appearing at an earlier time point than myocardin. Myocardin expression was stimulated by AngII and ERK (extracellular-signal-regulated kinase) phosphorylation, but was suppressed by an ARB (AngII type 1 receptor blocker), an ERK pathway inhibitor and myocardin siRNA (small interfering RNA). AngII increased both myocardin expression and transcription in neonatal cardiomyocytes. Binding of myocardin/SRF was identified using an EMSA, and a luciferase assay indicated the transcription of myocardin/SRF in neonatal cardiomyocytes. Increased BNP (B-type natriuretic peptide), MHC (myosin heavy chain) and [3H]proline incorporation into cardiomyocytes was identified after hypoxia with the presence of myocardin in hypertrophic cardiomyocytes. In conclusion, hypoxia in cardiomyocytes increased myocardin expression, which is mediated by the induction of AngII and the ERK pathway, to cause cardiomyocyte hypertrophy. Myocardial hypertrophy was identified as an increase in transcriptional activities, elevated hypertrophic and cardiomyocyte phenotype markers, and morphological hypertrophic changes in cardiomyocytes

    Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy

    Get PDF
    Inflammation in myocarditis induces cardiac injury and triggers disease progression to heart failure. NLRP3 inflammasome activation is a newly identified amplifying step in the pathogenesis of myocarditis. We previously have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1β, and IL-18 mRNA expression in CVB3-infected mice. ASC protein expression, essential for NLRP3 inflammasome assembly, increased upon CVB3 infection and was abrogated in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2 expression, NLRP3 inflammasome activation and IL-1β secretion in HL-1 cells, which was abolished after MSC supplementation. The inhibitory effect of MSC on NLRP3 inflammasome activity in HL-1 cells was partly mediated via secretion of the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1β- positive splenic macrophages, natural killer cells, and dendritic cells. The suppressive effect of MSC on inflammasome activation was associated with normalized expression of prominent regulators of myocardial contractility and fibrosis to levels comparable to control mice. In conclusion, MSC treatment in myocarditis could be a promising strategy limiting the adverse consequences of cardiac and systemic NLRP3 inflammasome activation

    Inflammation, ECG changes and pericardial effusion: Whom to biopsy in suspected myocarditis?

    Get PDF
    The role of endomyocardial biopsies in patients with clinically suspected acute myocarditis, myocarditis in the past, and dilated cardiomyopathy is discussed controversially. In fact, it is still under discussion whether information obtained from endomyocardial biopsies is relevant for further clinical decisions. Therefore this Critical Perspective will deal with the question, which patient should undergo endomyocardial biopsy investigations for an etiopathogenic differentiation of the disease and for the possible choice of immunomodulatory treatment strategies

    The Heart Is an Early Target of Anthrax Lethal Toxin in Mice: A Protective Role for Neuronal Nitric Oxide Synthase (nNOS)

    Get PDF
    Anthrax lethal toxin (LT) induces vascular insufficiency in experimental animals through unknown mechanisms. In this study, we show that neuronal nitric oxide synthase (nNOS) deficiency in mice causes strikingly increased sensitivity to LT, while deficiencies in the two other NOS enzymes (iNOS and eNOS) have no effect on LT-mediated mortality. The increased sensitivity of nNOS−/− mice was independent of macrophage sensitivity to toxin, or cytokine responses, and could be replicated in nNOS-sufficient wild-type (WT) mice through pharmacological inhibition of the enzyme with 7-nitroindazole. Histopathological analyses showed that LT induced architectural changes in heart morphology of nNOS−/− mice, with rapid appearance of novel inter-fiber spaces but no associated apoptosis of cardiomyocytes. LT-treated WT mice had no histopathology observed at the light microscopy level. Electron microscopic analyses of LT-treated mice, however, revealed striking pathological changes in the hearts of both nNOS−/− and WT mice, varying only in severity and timing. Endothelial/capillary necrosis and degeneration, inter-myocyte edema, myofilament and mitochondrial degeneration, and altered sarcoplasmic reticulum cisternae were observed in both LT-treated WT and nNOS−/− mice. Furthermore, multiple biomarkers of cardiac injury (myoglobin, cardiac troponin-I, and heart fatty acid binding protein) were elevated in LT-treated mice very rapidly (by 6 h after LT injection) and reached concentrations rarely reported in mice. Cardiac protective nitrite therapy and allopurinol therapy did not have beneficial effects in LT-treated mice. Surprisingly, the potent nitric oxide scavenger, carboxy-PTIO, showed some protective effect against LT. Echocardiography on LT-treated mice indicated an average reduction in ejection fraction following LT treatment in both nNOS−/− and WT mice, indicative of decreased contractile function in the heart. We report the heart as an early target of LT in mice and discuss a protective role for nNOS against LT-mediated cardiac damage
    corecore