9 research outputs found

    Estudio de los mecanismos moleculares implicados en la muerte apoptótica en un modelo de isquemia in vitro

    Get PDF
    Consultable des del TDXTítol obtingut de la portada digitalitzadaLa isquemia cerebral es la tercera causa de muerte en los países industrializados y constituye la principal causa de discapacidad en el adulto. A pesar de la enorme importancia socio-económica de esta enfermedad, hasta ahora el único tratamiento aprobado para paliarla es la administración del activador tisular del plasminógeno (tPA), el cual sólo se puede aplicar a un 5% de los pacientes. Por eso, es de vital importancia seguir realizando estudios destinados a profundizar en el conocimiento del los mecanismos moleculares implicados en esta patología. En los últimos años han aparecido evidencias que apoyan la idea de que en la isquemia cerebral, además de ocurrir una muerte celular necrótica, también se está produciendo una muerte más lenta de tipo apoptótico. Al tratarse la apoptosis de un proceso regulado y que requiere más tiempo para su ejecución, la ventana terapéutica que ofrece es mucho mayor. Tomando como base estas observaciones, el presente trabajo se ha centrado en el estudio de los mecanismos moleculares que subyacen a la isquemia cerebral. Para ello, se utilizó principalmente el modelo de privación de oxígeno y glucosa (OGD) en cultivos celulares mixtos de corteza cerebral de rata. La primera parte de este trabajo se ha centrado en estudiar el papel del factor de necrosis tumoral alfa (TNFα) en la OGD. Se observó que la OGD provoca una liberación de TNFα que, a través del receptor TNFR1, activa la caspasa-8, la cual es responsable de activar posteriormente la caspasa-3, una proteasa clave en la ejecución de la apoptosis. Además, se observó que inhibiendo el efecto del TNFα liberado o de la caspasa-8, se reduce la muerte inducida por la OGD. Estos datos sugieren que la caspasa-8 tiene un papel clave como caspasa iniciadora de la cascada apoptótica en respuesta a la liberación de TNFα mediada por la OGD. Por otro lado, se ha estudiado el papel del estrés del retículo endoplasmático (RE) en la OGD y en la hipoxia-isquemia neonatal. En ambos modelos se observó una activación de las vías de IRE1 y PERK, además de la proteólisis de la caspasa-12. Los resultados obtenidos indican también que la activación de esta caspasa en la OGD viene mediada por la calpaína y se debe a la entrada masiva de calcio mediada por los receptores de NMDA, sugiriendo que esta activación puede ser independiente del estrés del RE. Finalmente, se ha realizado un análisis masivo de los cambios de la expresión génica inducidos por la OGD, mediante la técnica de microarray. Entre los genes cuyo incremento se detectaba en el microarray, se confirmó el incremento de expresión de varios factores de transcripción que pueden tener un papel clave en la isquemia cerebral, como atf3, egr1, cebpδ, nr4a1 y nr4a3. Además, este estudio ha permitido caracterizar los principales clusters de genes inducidos en la OGD, observándose que muchos de los genes cuyo incremento se había observado en modelos murinos de isquemia cerebral, también se encontraban incrementados en la OGD. Estos resultados ponen de relieve que el modelo de OGD en cultivos mixtos de células corticales es una buena aproximación para el estudio de la isquemia cerebral. Por lo tanto, los resultados obtenidos en los apartados anteriores, los cuales aportan nuevos datos sobre mecanismos moleculares en la OGD, pueden servir de base para su extrapolación a los mecanismos moleculares implicados en la isquemia y por tanto, para diseñar nuevas y mejores herramientas terapéuticas, con el fin de paliar esta enfermedad.Brain ischemia is the third cause of death in industrialized countries and the main reason of adulthood incapacity. Although the great social-economic importance of this disease, the only approved treatment, until now, is the tissue plasminogen activator (tPA). That's why is really important to continue with studies focused in extending the knowledge of the molecular mechanisms involved in this pathology. In the last years mounting evidences supporting the idea that in brain ischemia both necrotic and apoptotic cell death are taking place, had appeared. Since apoptosis is a well regulated process and it takes more time, it offers longer therapeutic window. Taken in account these observations, the present work has been focused in the study of molecular mechanisms underlying brain ischemia. For this purpose, the oxygen and glucose deprivation (OGD) model in mixed cortical cells culture was used. The first part of this work was focused in studying the role of tumor necrosis factor alpha (TNFα) in OGD. It was shown that OGD evokes TNFα release, and this cytokine activates caspasa-8 through TNFR1 receptor. This initiator caspase is responsible of subsequent activation of caspase-3, a key protease in apoptosis execution. Moreover, it was shown that inhibition of TNFα or caspase-8 effect reduces the OGD-induced cell death. These data suggest that caspase-8 has a key role as initiator of apoptotic cascade in response to released TNFα in OGD. On the other hand, the role of endoplasmatic reticulum (ER) stress was studied in OGD and neonatal hypoxia-ischemia. In both models was shown the activation of IRE1 and PERK pathways, as well as the caspase-12 proteolysis. The obtained results also indicate that the activation of this caspase is mediated by calpain and it is due to the massive entrance of calcium regulated by NMDA receptors, suggesting that this activation is independent of ER stress. Finally, a massive analysis of genetic expression changes induced by OGD was performed using microarray technology. Among the increased genes detected by microarray, it was confirmed the increase of expression of several transcription factor whose could have a key role in brain ischemia, as atf3, egr1, cebpδ, nr4a1 y nr4a3. Moreover, this study has allowed the characterization of main gene clusters induced by OGD, showing that many of increased genes in murine models of brain ischemia were also increased in OGD. These results demonstrate that the OGD model in mixed cortical cells cultures is an adequate approximation for the study of brain ischemia. So, the obtained results in this work could serve as the basis for extrapolation to the molecular mechanisms involved in brain ischemia, and hence, for designing new and better therapeutic tools

    Nurr1 protein is required for N-Methyl-d-aspartic Acid (NMDA) receptor-mediated neuronal survival

    Get PDF
    NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons

    The long form of fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis

    Get PDF
    Death receptors (DRs) and their ligands are expressed in developing nervous system. However, neurons are generally resistant to death induction through DRs and rather their activation promotes neuronal outgrowth and branching. These results suppose the existence of DRs antagonists expressed in the nervous system. Fas apoptosis inhibitory molecule (FAIMS ) was first identified as a Fas antagonist in B-cells. Soon after, a longer alternative spliced isoform with unknown function was identified and named FAIML. FAIMS is widely expressed, including the nervous system, and we have shown previously that it promotes neuronal differentiation but it is not an anti-apoptotic molecule in this system. Here, we demonstrate that FAIML is expressed specifically in neurons, and its expression is regulated during the development. Expression could be induced by NGF through the extracellular regulated kinase pathway in PC12(pheochromocytoma cell line) cells. Contrary to FAIMS , FAIML does not increase the neurite outgrowth induced by neurotrophins and does not interfere with nuclear factor ĸB pathway activation as FAIMS does. Cells overexpressing FAIML are resistant to apoptotic cell death induced by DRs such as Fas or tumor necrosis factor R1. Reduction of endogenous expression by small interfering RNA shows that endogenousFAIML protects primary neurons from DR-induced cell death. The detailed analysis of this antagonism shows thatFAIML can bind to Fas receptor and prevent the activation of the initiator caspase-8 induced by Fas. In conclusion, our results indicate that FAIML could be responsible for maintaining initiator caspases inactive after receptor engagement protecting neurons from the cytotoxic action of death ligands

    Estudio de los mecanismos moleculares implicados en la muerte apoptótica en un modelo de isquemia cerebral in vitro

    Get PDF
    La isquemia cerebral es la tercera causa de muerte en los países industrializados y constituye la principal causa de discapacidad en el adulto. A pesar de la enorme importancia socio-económica de esta enfermedad, hasta ahora el único tratamiento aprobado para paliarla es la administración del activador tisular del plasminógeno (tPA), el cual sólo se puede aplicar a un 5% de los pacientes. Por eso, es de vital importancia seguir realizando estudios destinados a profundizar en el conocimiento del los mecanismos moleculares implicados en esta patología. En los últimos años han aparecido evidencias que apoyan la idea de que en la isquemia cerebral, además de ocurrir una muerte celular necrótica, también se está produciendo una muerte más lenta de tipo apoptótico. Al tratarse la apoptosis de un proceso regulado y que requiere más tiempo para su ejecución, la ventana terapéutica que ofrece es mucho mayor. Tomando como base estas observaciones, el presente trabajo se ha centrado en el estudio de los mecanismos moleculares que subyacen a la isquemia cerebral. Para ello, se utilizó principalmente el modelo de privación de oxígeno y glucosa (OGD) en cultivos celulares mixtos de corteza cerebral de rata. La primera parte de este trabajo se ha centrado en estudiar el papel del factor de necrosis tumoral alfa (TNFα) en la OGD. Se observó que la OGD provoca una liberación de TNFα que, a través del receptor TNFR1, activa la caspasa-8, la cual es responsable de activar posteriormente la caspasa-3, una proteasa clave en la ejecución de la apoptosis. Además, se observó que inhibiendo el efecto del TNFα liberado o de la caspasa-8, se reduce la muerte inducida por la OGD. Estos datos sugieren que la caspasa-8 tiene un papel clave como caspasa iniciadora de la cascada apoptótica en respuesta a la liberación de TNFα mediada por la OGD.Por otro lado, se ha estudiado el papel del estrés del retículo endoplasmático (RE) en la OGD y en la hipoxia-isquemia neonatal. En ambos modelos se observó una activación de las vías de IRE1 y PERK, además de la proteólisis de la caspasa-12. Los resultados obtenidos indican también que la activación de esta caspasa en la OGD viene mediada por la calpaína y se debe a la entrada masiva de calcio mediada por los receptores de NMDA, sugiriendo que esta activación puede ser independiente del estrés del RE.Finalmente, se ha realizado un análisis masivo de los cambios de la expresión génica inducidos por la OGD, mediante la técnica de microarray. Entre los genes cuyo incremento se detectaba en el microarray, se confirmó el incremento de expresión de varios factores de transcripción que pueden tener un papel clave en la isquemia cerebral, como atf3, egr1, cebpδ, nr4a1 y nr4a3. Además, este estudio ha permitido caracterizar los principales clusters de genes inducidos en la OGD, observándose que muchos de los genes cuyo incremento se había observado en modelos murinos de isquemia cerebral, también se encontraban incrementados en la OGD. Estos resultados ponen de relieve que el modelo de OGD en cultivos mixtos de células corticales es una buena aproximación para el estudio de la isquemia cerebral. Por lo tanto, los resultados obtenidos en los apartados anteriores, los cuales aportan nuevos datos sobre mecanismos moleculares en la OGD, pueden servir de base para su extrapolación a los mecanismos moleculares implicados en la isquemia y por tanto, para diseñar nuevas y mejores herramientas terapéuticas, con el fin de paliar esta enfermedad.Brain ischemia is the third cause of death in industrialized countries and the main reason of adulthood incapacity. Although the great social-economic importance of this disease, the only approved treatment, until now, is the tissue plasminogen activator (tPA). That's why is really important to continue with studies focused in extending the knowledge of the molecular mechanisms involved in this pathology. In the last years mounting evidences supporting the idea that in brain ischemia both necrotic and apoptotic cell death are taking place, had appeared. Since apoptosis is a well regulated process and it takes more time, it offers longer therapeutic window. Taken in account these observations, the present work has been focused in the study of molecular mechanisms underlying brain ischemia. For this purpose, the oxygen and glucose deprivation (OGD) model in mixed cortical cells culture was used.The first part of this work was focused in studying the role of tumor necrosis factor alpha (TNFα) in OGD. It was shown that OGD evokes TNFα release, and this cytokine activates caspasa-8 through TNFR1 receptor. This initiator caspase is responsible of subsequent activation of caspase-3, a key protease in apoptosis execution. Moreover, it was shown that inhibition of TNFα or caspase-8 effect reduces the OGD-induced cell death. These data suggest that caspase-8 has a key role as initiator of apoptotic cascade in response to released TNFα in OGD. On the other hand, the role of endoplasmatic reticulum (ER) stress was studied in OGD and neonatal hypoxia-ischemia. In both models was shown the activation of IRE1 and PERK pathways, as well as the caspase-12 proteolysis. The obtained results also indicate that the activation of this caspase is mediated by calpain and it is due to the massive entrance of calcium regulated by NMDA receptors, suggesting that this activation is independent of ER stress.Finally, a massive analysis of genetic expression changes induced by OGD was performed using microarray technology. Among the increased genes detected by microarray, it was confirmed the increase of expression of several transcription factor whose could have a key role in brain ischemia, as atf3, egr1, cebpδ, nr4a1 y nr4a3. Moreover, this study has allowed the characterization of main gene clusters induced by OGD, showing that many of increased genes in murine models of brain ischemia were also increased in OGD. These results demonstrate that the OGD model in mixed cortical cells cultures is an adequate approximation for the study of brain ischemia. So, the obtained results in this work could serve as the basis for extrapolation to the molecular mechanisms involved in brain ischemia, and hence, for designing new and better therapeutic tools

    Nurr1 protein is required for N-Methyl-d-aspartic Acid (NMDA) receptor-mediated neuronal survival

    No full text
    NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons

    Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    No full text
    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia-ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress

    The long form of fas apoptotic inhibitory molecule is expressed specifically in neurons and protects them against death receptor-triggered apoptosis

    No full text
    Death receptors (DRs) and their ligands are expressed in developing nervous system. However, neurons are generally resistant to death induction through DRs and rather their activation promotes neuronal outgrowth and branching. These results suppose the existence of DRs antagonists expressed in the nervous system. Fas apoptosis inhibitory molecule (FAIMS ) was first identified as a Fas antagonist in B-cells. Soon after, a longer alternative spliced isoform with unknown function was identified and named FAIML. FAIMS is widely expressed, including the nervous system, and we have shown previously that it promotes neuronal differentiation but it is not an anti-apoptotic molecule in this system. Here, we demonstrate that FAIML is expressed specifically in neurons, and its expression is regulated during the development. Expression could be induced by NGF through the extracellular regulated kinase pathway in PC12(pheochromocytoma cell line) cells. Contrary to FAIMS , FAIML does not increase the neurite outgrowth induced by neurotrophins and does not interfere with nuclear factor ĸB pathway activation as FAIMS does. Cells overexpressing FAIML are resistant to apoptotic cell death induced by DRs such as Fas or tumor necrosis factor R1. Reduction of endogenous expression by small interfering RNA shows that endogenousFAIML protects primary neurons from DR-induced cell death. The detailed analysis of this antagonism shows thatFAIML can bind to Fas receptor and prevent the activation of the initiator caspase-8 induced by Fas. In conclusion, our results indicate that FAIML could be responsible for maintaining initiator caspases inactive after receptor engagement protecting neurons from the cytotoxic action of death ligands
    corecore