5 research outputs found

    A community challenge for a pancancer drug mechanism of action inference from perturbational profile data

    Get PDF
    The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with similar to 400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing the accuracy and sensitivity of computational algorithms for de novo drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are provided to 21 teams who are blind to the identity of the compounds. The teams are asked to predict high-affinity binding targets of each compound among similar to 1,300 targets cataloged in DrugBank. The best performing methods leverage gene expression profile similarity analysis as well as deep-learning methodologies trained on individual datasets. This study lays the foundation for future integrative analyses of pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and insights into network-based assessments of drug mechanisms of action.Peer reviewe

    ohsu-comp-bio/decoupleRBench: Release for the Zenodo DOI

    No full text
    <p>Release for the Zenodo DOI</p&gt

    Bioactivity Profile Similarities to Expand the Repertoire of COVID-19 Drugs

    No full text
    We present an online resource, based on small-molecule bioactivity signatures and natural language processing, to expand the portfolio of compounds with potential to treat COVID-19. By comparing the set of drugs reported to be potentially active against SARS-CoV-2 to a universe of 1M bioactive molecules, we identify compounds that display analogous chemical and functional features to the current COVID-19 candidates. Searches can be filtered by level of evidence and mechanism of action, and results can be restricted to drug molecules or include the much broader space of bioactive compounds. Moreover, we allow users to contribute COVID-19 drug candidates, which are automatically incorporated to the pipeline once per day. The computational platform, as well as the source code, is available at https://sbnb.irbbarcelona.org/covid19

    Bioactivity descriptors for uncharacterized chemical compounds

    No full text
    Chemical descriptors encode the physicochemical and structural properties of small molecules, and they are at the core of chemoinformatics. The broad release of bioactivity data has prompted enriched representations of compounds, reaching beyond chemical structures and capturing their known biological properties. Unfortunately, bioactivity descriptors are not available for most small molecules, which limits their applicability to a few thousand well characterized compounds. Here we present a collection of deep neural networks able to infer bioactivity signatures for any compound of interest, even when little or no experimental information is available for them. Our signaturizers relate to bioactivities of 25 different types (including target profiles, cellular response and clinical outcomes) and can be used as drop-in replacements for chemical descriptors in day-to-day chemoinformatics tasks. Indeed, we illustrate how inferred bioactivity signatures are useful to navigate the chemical space in a biologically relevant manner, unveiling higher-order organization in natural product collections, and to enrich mostly uncharacterized chemical libraries for activity against the drug-orphan target Snail1. Moreover, we implement a battery of signature-activity relationship (SigAR) models and show a substantial improvement in performance, with respect to chemistry-based classifiers, across a series of biophysics and physiology activity prediction benchmarks.We would like to thank the SB&NB lab members for their support and helpful discussions. We are grateful to T.O. Botelho, I. Ramos, and C. Gonzalez for giving us access to the IRB Barcelona and Prestwick libraries. P.A. acknowledges the support of the Generalitat de Catalunya (RIS3CAT Emergents CECH: 001-P-001682 and VEIS: 001-P-001647), the Spanish Ministerio de Economía y Competitividad (BIO2016-77038-R), the European Research Council (SysPharmAD: 614944), and the European Commission (RiPCoN: 101003633). A.G.d.H. acknowledges support by Agencia Estatal de Investigación (AEI) and Fondos FEDER (PID2019-104698RB-I00)

    Spatially resolved multiomics on the neuronal effects induced by spaceflight in mice

    No full text
    Abstract Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR)
    corecore