393 research outputs found

    Considerations on the Psychological Status of the Patients Undergoing Radical Cystectomy

    Get PDF
    The psychological impact on patients suffering radical cystectomy is twofold - (both that of the underlying neoplastic disease and that measured by the quality of life subsequent to surgery) and increases as the urinary derivation technique is less physiological and affects more the local anatomy. Although there are numerous questionnaires that assess the quality of life of patients with cancer (HRQoL - health related QoL), not many probe bladder cancer morbidity or correlate the different types of urinary diversions’ impact on QoL (quality of life). We analyzed 39 cases in our clinic who underwent radical cystectomy between August 2013 and August 2014. Different diversions were performed, as follows: for 24 patients a cutaneous ureterostomy was performed, in 10 cases a Mainz II pouch, in 3 cases a Bricker derivation and in 2 patients a Studer neobladder was performed. In these patients, QoL - Cancer Version and FACT-BL questionnaires were administered and were followed for an initial period of 2 years. According to our survey, the Bricker derivation is best tolerated, followed by neobladder and the Mainz II pouch

    Optical Spin Initialization and Non-Destructive Measurement in a Quantum Dot Molecule

    Full text link
    The spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is optically prepared and measured through the trion triplet states. A longitudinal magnetic field is used to tune two of the trion states into resonance, forming a superposition state through asymmetric spin exchange. As a result, spin-flip Raman transitions can be used for optical spin initialization, while separate trion states enable cycling transitions for non-destructive measurement. With two-laser transmission spectroscopy we demonstrate both operations simultaneously, something not previously accomplished in a single quantum dot.Comment: Accepted for publication in Phys. Rev. Let

    Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Get PDF
    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor

    Replication study of 34 common SNPs associated with prostate cancer in the Romanian population

    Get PDF
    Prostate cancer is the third‐most common form of cancer in men in Romania. The Romanian unscreened population represents a good sample to study common genetic risk variants. However, a comprehensive analysis has not been conducted yet. Here, we report our replication efforts in a Romanian population of 979 cases and 1027 controls, for potential association of 34 literature‐reported single nucleotide polymorphisms (SNPs) with prostate cancer. We also examined whether any SNP was differentially associated with tumour grade or stage at diagnosis, with disease aggressiveness, and with the levels of PSA (prostate specific antigen). In the allelic analysis, we replicated the previously reported risk for 19 loci on 4q24, 6q25.3, 7p15.2, 8q24.21, 10q11.23, 10q26.13, 11p15.5, 11q13.2, 11q13.3. Statistically significant associations were replicated for other six SNPs only with a particular disease phenotype: low‐grade tumour and low PSA levels (rs1512268), high PSA levels (rs401681 and rs11649743), less aggressive cancers (rs1465618, rs721048, rs17021918). The strongest association of our tested SNP's with PSA in controls was for rs2735839, with 29% increase for each copy of the major allele G, consistent with previous results. Our results suggest that rs4962416, previously associated only with prostate cancer, is also associated with PSA levels, with 12% increase for each copy of the minor allele C. The study enabled the replication of the effect for the majority of previously reported genetic variants in a set of clinically relevant prostate cancers. This is the first replication study on these loci, known to associate with prostate cancer, in a Romanian population.This study was funded in part by the European Union FP7 Program (ProMark project 202059) and by the EEA grant (ROMCAN project RO14-0017; EEA-JRP-RO-NO-20131-10191).Peer reviewe

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

    Get PDF
    We present the first measurement of the fluctuations in the number of muons in extensive air showers produced by ultrahigh energy cosmic rays. We find that the measured fluctuations are in good agreement with predictions from air shower simulations. This observation provides new insights into the origin of the previously reported deficit of muons in air shower simulations and constrains models of hadronic interactions at ultrahigh energies. Our measurement is compatible with the muon deficit originating from small deviations in the predictions from hadronic interaction models of particle production that accumulate as the showers develop.Fil: Aab, A.. Radboud Universiteit Nijmegen; Países BajosFil: Abreu, P.. Instituto Superior Tecnico; PortugalFil: Aglietta, M.. Osservatorio Astrofisico di Torino; Italia. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Albury, J. M.. University of Adelaide; AustraliaFil: Allekotte, Ingomar. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Almela, Daniel Alejandro. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Alvarez Muñiz, J.. Universidad de Santiago de Compostela; EspañaFil: Alves Batista, R.. Radboud Universiteit Nijmegen; Países BajosFil: Anastasi, G. A.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Anchordoqui, L.. University of New York; Estados UnidosFil: Andrada, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Andringa, S.. Instituto Superior Tecnico; PortugalFil: Aramo, C.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Araújo Ferreira, P. R.. Rwth Aachen University; AlemaniaFil: Asorey, Hernán Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Assis, P.. Instituto Superior Tecnico; PortugalFil: Avila, Gualberto. Observatorio Pierre Auger. Observatorio Sur - Malargue; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Badescu, A. M.. University Politehnica of Bucharest; RumaniaFil: Bakalova, A.. Czech Academy of Sciences; República ChecaFil: Balaceanu, A.. “Horia Hulubei” National Institute for Physics and Nuclear Engineering; RumaniaFil: Barbato, F.. Università degli Studi di Napoli Federico II; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Barreira Luz, R. J.. Instituto Superior Técnico; PortugalFil: Becker, K. H.. Bergische Universität Wuppertal; AlemaniaFil: Bellido, J. A.. University of Adelaide; AustraliaFil: Berat, C.. Universite Grenoble Alpes; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bertaina, M. E.. Università di Torino; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Bertou, Xavier Pierre Louis. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). Grupo de Partículas y Campos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Biermann, P. L.. Max-Planck-Institut für Radioastronomie; AlemaniaFil: Bister, T.. Aachen University; AlemaniaFil: Mollerach, Maria Silvia. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin
    corecore