208 research outputs found

    Smooth Muscle Myosin Inhibition: A Novel Therapeutic Approach for Pulmonary Hypertension

    Get PDF
    Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165) ameliorates pulmonary hypertension.Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.). In rats, chronic pulmonary hypertension was induced by monocrotaline.CK-165 (4 mg/kg, i.v.) reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01), while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05) while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8%) reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%).Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension

    New Therapeutic Strategies for Systemic Sclerosis—a Critical Analysis of the Literature

    Get PDF
    Systemic sclerosis (SSc) is a multi-system disease characterized by skin fibrosis and visceral disease. Therapy is organ and pathogenesis targeted. In this review, we describe novel strategies in the treatment of SSc. Utilizing the MEDLINE and the COCHRANE REGISTRY, we identified open trials, controlled trials, for treatment of SSc from 1999 to April 2005. We used the terms scleroderma, systemic sclerosis, Raynaud's phenomenon, pulmonary hypertension, methotrexate, cyclosporin, tacrolimus, relaxin, low-dose penicillamine, IVIg, calcium channel blockers, losartan, prazocin, iloprost, N-acetylcysteine, bosentan, cyclophosphamide, lung transplantation, ACE inhibitors, anti-thymocyte globulin, and stem cell transplantation. Anecdotal reports were omitted

    Endothelin-1 Predicts Hemodynamically Assessed Pulmonary Arterial Hypertension in HIV Infection.

    Get PDF
    BackgroundHIV infection is an independent risk factor for PAH, but the underlying pathogenesis remains unclear. ET-1 is a robust vasoconstrictor and key mediator of pulmonary vascular homeostasis. Higher levels of ET-1 predict disease severity and mortality in other forms of PAH, and endothelin receptor antagonists are central to treatment, including in HIV-associated PAH. The direct relationship between ET-1 and PAH in HIV-infected individuals is not well described.MethodsWe measured ET-1 and estimated pulmonary artery systolic pressure (PASP) with transthoracic echocardiography (TTE) in 106 HIV-infected individuals. Participants with a PASP ≥ 30 mmHg (n = 65) underwent right heart catheterization (RHC) to definitively diagnose PAH. We conducted multivariable analysis to identify factors associated with PAH.ResultsAmong 106 HIV-infected participants, 80% were male, the median age was 52 years and 77% were on antiretroviral therapy. ET-1 was significantly associated with higher values of PASP [14% per 0.1 pg/mL increase in ET-1, p = 0.05] and PASP ≥ 30 mmHg [PR (prevalence ratio) = 1.24, p = 0.012] on TTE after multivariable adjustment for PAH risk factors. Similarly, among the 65 individuals who underwent RHC, ET-1 was significantly associated with higher values of mean pulmonary artery pressure and PAH (34%, p = 0.003 and PR = 2.43, p = 0.032, respectively) in the multivariable analyses.ConclusionsHigher levels of ET-1 are independently associated with HIV-associated PAH as hemodynamically assessed by RHC. Our findings suggest that excessive ET-1 production in the setting of HIV infection impairs pulmonary endothelial function and contributes to the development of PAH

    Acute pressure overload of the right ventricle. Comparison of two models of right-left shunt. Pulmonary artery to left atrium and right atrium to left atrium: experimental study

    Get PDF
    <p>Abtract</p> <p>Background</p> <p>In right ventricular failure (RVF), an interatrial shunt can relieve symptoms of severe pulmonary hypertension by reducing right ventricular preload and increasing systemic flow. Using a pig model to determine if a pulmonary artery - left atrium shunt (PA-LA) is better than a right atrial - left atrial shunt (RA-LA), we compared the hemodynamic effects and blood gases between the two shunts.</p> <p>Methods</p> <p>Thirty, male Large White pigs weighting in average 21.3 kg ± 0.7 (SEM) were divided into two groups (15 pigs per group): In group 1, banding of the pulmonary artery and a pulmonary artery to left atrium shunt with an 8 mm graft (PA-LA) was performed and in group 2 banding of the pulmonary artery and right atrial to left atrial shunt (RA-LA) with a similar graft was performed. Hemodynamic parameters and blood gases were measured from all cardiac chambers in 10 and 20 minutes, half and one hour interval from the baseline (30 min from the banding). Cardiac output and flow of at the left anterior descending artery was also monitored.</p> <p>Results</p> <p>In both groups, a stable RVF was generated. The PA-LA shunt compared to the RA-LA shunt has better hemodynamic performance concerning the decreased right ventricle afterload, the 4 fold higher mean pressure of the shunt, the better flow in left anterior descending artery and the decreased systemic vascular resistance. Favorable to the PA-LA shunt is also the tendency - although not statistically significant - in relation to central venous pressure, left atrial filling and cardiac output.</p> <p>Conclusion</p> <p>The PA-LA shunt can effectively reverse the catastrophic effects of acute RVF offering better hemodynamic characteristics than an interatrial shunt.</p

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Cost effectiveness of first-line oral therapies for pulmonary arterial hypertension: A modelling study

    Get PDF
    Background: In recent years, a significant number of costly oral therapies have become available for the treatment of pulmonary arterial hypertension (PAH). Funding decisions for these therapies requires weighing up their effectiveness and costs. Objective: The aim of this study was to assess the cost effectiveness of monotherapy with oral PAH-specific therapies versus supportive care as initial therapy for patients with functional class (FC) II and III PAH in Canada. Methods: A cost-utility analysis, from the perspective of a healthcare system and based on a Markov model, was designed to estimate the costs and quality-adjusted life-years (QALYs) associated with bosentan, ambrisentan, riociguat, tadalafil, sildenafil and supportive care for PAH in treatment-naïve patients. Separate analyses were conducted for cohorts of patients commencing therapy at FC II and III PAH. Transition probabilities, based on the relative risk of improving and worsening in FC with treatment versus placebo, were derived from a recent network meta-analysis. Utility values and costs were obtained from published data and clinical expert opinion. Extensive sensitivity analyses were conducted. Results: Analysis suggests that sildenafil is the most cost-effective therapy for PAH in patients with FC II or III. Sildenafil was both the least costly and most effective therapy, thereby dominating all other treatments. Tadalafil was also less costly and more effective than supportive care in FC II and III; however, sildenafil was dominant over tadalafil. Even given the uncertainty within the clinical inputs, the probabilistic sensitivity analysis showed that apart from sildenafil and tadalafil, the other PAH therapies had negligible probability of being the most cost effective. Conclusion: The results show that initiation of therapy with sildenafil is likely the most cost-effective strategy in PAH patients with either FC II or III disease.This research was supported by funds from the Canadian Agency for Drugs and Technologies in Health (CADTH)

    Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-associated Pulmonary Arterial Hypertension

    Get PDF
    Fractalkine (FKN) and its receptor CX3CR1 are critical mediators in the vascular and tissue damage of several chronic diseases, including systemic sclerosis (SSc) and pulmonary arterial hypertension (PAH). Interestingly, the V249I and T280M genetic polymorphisms influence CX3CR1 expression and function. We investigated whether these polymorphisms are associated with PAH secondary to SSc. CX3CR1 genotypes were analyzed by PCR and sequencing in 76 patients with limited SSc and 204 healthy controls. PAH was defined by colorDoppler echocardiography. Homozygosity for 249II as well as the combined presence of 249II and 280MM were significantly more frequent in patients with SSc compared to controls (17 vs 6%, p = 0.0034 and 5 vs 1%, p = 0.0027, respectively). The 249I and 280M alleles were associated with PAH (odd ratio [OR] 2.2, 95% confidence interval [CI] 1.01-4.75, p = 0.028 and OR 7.37, 95%CI: 2.45-24.60, p = 0.0001, respectively). In conclusion, the increased frequencies of 249I and 280M CX3CR1 alleles in a subgroup of patients with SSc-associated PAH suggest a role for the fractalkine system in the pathogenesis of this condition. Further, the 249I allele might be associated with susceptibility to SSc
    corecore