2,966 research outputs found

    Memory for pitch in congenital amusia: Beyond a fine-grained pitch discrimination problem

    Get PDF
    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination

    Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Get PDF
    On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs). The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (<I>P<sub>t</sub></I>) and collapse (<I>P<sub>c</sub></I>) of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsþ heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR) failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsþ UHF

    A Statistical investigation of the invariant latitude dependence of unstable magnetospheric ion populations in relation to high m ULF wave generation

    No full text
    International audienceA statistical study is presented of the unstable proton populations, which contain the free energy required to drive small-scale poloidal mode ULF waves in the magnetosphere, observed at invariant latitudes of 60° to 80°. The data are all in the form of Ion Distribution Functions (IDFs) amassed over ~6 years using the CAMMICE (MICS) instrument on the Polar spacecraft, and cover proton energies of 1 keV to 328 keV. The free energy contained in the unstable, positive gradient regions of the IDFs is available to drive resonant wave growth. The results show that positive gradient regions in IDFs on magnetic field lines corresponding to the lower invariant latitudes in the range under study occur predominantly in the afternoon sector at proton energies of 5 keV to 20 keV. In the morning and dawn sectors positive gradient regions are seen with a typical proton energy range of 5 keV to 45 keV. While the proton energy peaks in the afternoon sector at around ~7 keV the morning sector has two peaks occurring at ~10 keV and ~20?30 keV. The technique of Baddeley et al. (2004), employed to quantify the free energy in each IDF, found that as invariant latitude increased the free energy contained in the positive gradient regions fell. Positive gradient regions in the afternoon sector decrease in number with invariant latitude at a faster rate than those in the morning sector. The majority of positive gradient regions had free energy values of >1010 J with many at the lowest invariant latitudes having free energies of in excess of 1011 J. Positive gradient regions at proton energies of >100 keV are rarely observed, and have free energies of typically <1

    Association of imaging abnormalities of the subcallosal septal area with Alzheimer's disease and mild cognitive impairment

    Get PDF
    Aim: To evaluate the use the distance between the adjacent septal nuclei as a surrogate marker of septal area atrophy seen in Alzheimer's disease (AD). Materials & Methods: Interseptal distance (ISD) was measured, blind to clinical details, in 250 patients who underwent computed tomography (CT) of the brain at University Hospital of Wales. Clinical details including memory problem history were retrieved. An ISD cut-off value that discriminated those with and without memory symptoms was sought. ISD measurements were also made in 20 AD patients. To test both the method and the defined cut-off, measurements were then made in an independent cohort of 21 mild cognitive impairment (MCI) patients and 45 age-matched healthy controls, in a randomised and blinded fashion. Results: ISD measurement was achieved in all patients. In 28 patients with memory symptoms, the mean ISD was 5.9 mm compared with 2.3 mm in those without overt symptoms (p=0.001). The optimum ISD cut-off value was 4 mm (sensitivity 85.7% and specificity 85.8%). All AD patients had an ISD of >4 mm (mean ISD= 6.1 mm). The mean ISD for MCI patients was 3.84 mm compared with 2.18 mm in age-matched healthy controls (p=0.001). Using a 4 mm cut-off correctly categorised 10 mild cognitive impairment patients (47.6%) and 38 healthy controls (84.4%). Conclusion: ISD is a simple and reliable surrogate measurement for septal area atrophy, applicable to CT and magnetic resonance imaging (MRI). It can be used to help select patients for further investigation

    Developing the Svalbard Integrated Arctic Earth Observing System (SIOS)

    Get PDF
    Based on the ongoing large climatic and environmental changes and the history of science coordination in Svalbard leading to the development of Svalbard Integrated Arctic Earth Observing System (SIOS), we present an overview of the current gaps in knowledge and infrastructure based on a synthesis of the recommendations presented in the annual State of Environmental Science in Svalbard (SESS) reporting of SIOS. Recommendations from the first 4 years of SESS reporting represent the point of view of the wide scientific community operating the large observing system implemented in Svalbard (SIOS) since 2018 and aim to identify the scientific potential to further develop the observing system. The recommendations are bottom-up inputs for a continuous process that aims to accomplish the vision and mission of SIOS: optimizing, integrating and further developing the observing system in an Earth system science (ESS) perspective. The primary outcome of the synthesis work is the evidence that ESS in SIOS has, during the first 4 years of operation, naturally developed from individual scientists or smaller groups of scientists to larger disciplinary international groups of scientists working together within the different environments (the atmosphere, the cryosphere, and marine and terrestrial environments). It is clear that strategic efforts towards interdisciplinarity are necessary for operating fully at ESS scale in Svalbard. As Svalbard is experiencing the largest ongoing warming in the Arctic and worldwide, SIOS is in a unique position to perform a full-scale study of all processes impacting ESS dynamics and controlling the water cycle using all parts of the SIOS observation network, with a large potential for increasing the understanding of key mechanisms in the Earth system. We also identify the potential to upscale Svalbard-based observations collected in SIOS to pan-Arctic and global scales, contributing to full-scale ESS.</p

    A Quantitative Test of the Predicted Relationship between Countershading and Lighting Environment

    Get PDF
    Countershading, a vertical luminance gradient from a dark back to a light belly, is perhaps the most common coloration phenotype in the animal kingdom. Why? We investigated whether countershading functions as self-shadow concealment (SSC) in ruminants. We calculated “optimal” countershading for SSC by measuring illumination falling onto a model ruminant as a function of time of day and lighting environment. Calibrated images of 114 species of ruminant were compared to the countershading model, and phylogenetic analyses were used to find the best predictors of coats’ countershading characteristics. In many species, countershading was close to the model’s prediction of “optimal” countershading for SSC. Stronger countershading was associated with increased use of open lighting environments, living closer to the equator, and small body size. Abrupt transitions from dark to light tones were more common in open lighting environments but unassociated with group size or antipredator behavior. Though the SSC hypothesis prediction for stronger countershading in diurnal species was not supported and noncountershaded or reverse-countershaded species were unexpectedly common, this basic pattern of associations is explained only by the SSC hypothesis. Despite extreme variation in lighting conditions, many terrestrial animals still find protection from predation by compensating for their own shadows

    Sensory imagery in craving: From cognitive psychology to new treatments for addiction

    Get PDF
    Sensory imagery is a powerful tool for inducing craving because it is a key component of the cognitive system that underpins human motivation. The role of sensory imagery in motivation is explained by Elaborated Intrusion (EI) theory. Imagery plays an important role in motivation because it conveys the emotional qualities of the desired event, mimicking anticipated pleasure or relief, and continual elaboration of the imagery ensures that the target stays in mind. We argue that craving is a conscious state, intervening between unconscious triggers and consumption, and summarise evidence that interfering with sensory imagery can weaken cravings. We argue that treatments for addiction can be enhanced by the application of EI theory to maintain motivation, and assist in the management of craving in high-risk situations

    A frequency weighting for the evaluation of steering wheel rotational vibration

    Get PDF
    The human perception of rotational hand-arm vibration has been investigated by means of a test rig consisting of a rigid frame, an electrodynamic shaker unit, a rigid steering wheel, a shaft assembly, bearings and an automobile seat. Fifteen subjects were tested while seated in a driving posture. Four equal sensation tests and one annoyance threshold test were performed using sinusoidal excitation at 18 frequencies in the range from 3 to 315 Hz. In order to guarantee the generality of the equal sensation data the four tests were defined to permit checks of the possible influence of three factors: reference signal amplitude, psychophysical test procedure and temporary threshold shift (TTSv) caused by the test exposure. All equal sens ation tests used a reference sinusoid of 63 Hz at either 1.0 or 1.5 m/s2 r.m.s. in amplitude. The four equal sensation curves were similar in shape and suggested a decrease in human sensitivity to hand-arm rotational vibration with increasing frequency. The slopes of the equal sensation curves changed at transition points of approximately 6.3 and 63 Hz. A frequency weighting, called Ws, was developed for the purpose of evaluating steering wheel rotational vibration. The proposed Ws has a slope of 0 dB per octave over the frequency range from 3 to 6.3 Hz, a slope of -6 dB per octave from 6.3 to 50 Hz, a slope of 0 dB per octave from 50 to 160 Hz and a slope of -10 dB per octave from 160 to 315 Hz. Ws provides a possible alternative to the existing Wh frequency weighting defined in International Standards Organisation 5349-1 (2001) and British Standards Institution 6842 (1987)

    Using deep autoencoders to investigate image matching in visual navigation

    Get PDF
    This paper discusses the use of deep autoencoder networks to find a compressed representation of an image, which can be used for visual naviga-tion. Images reconstructed from the compressed representation are tested to see if they retain enough information to be used as a visual compass (in which an image is matched with another to recall a bearing/movement direction) as this ability is at the heart of a visual route navigation algorithm. We show that both reconstructed images and compressed representations from different layers of the autoencoder can be used in this way, suggesting that a compact image code is sufficient for visual navigation and that deep networks hold promise for find-ing optimal visual encodings for this task
    • 

    corecore