5,187 research outputs found

    The Optimal Single Copy Measurement for the Hidden Subgroup Problem

    Full text link
    The optimization of measurements for the state distinction problem has recently been applied to the theory of quantum algorithms with considerable successes, including efficient new quantum algorithms for the non-abelian hidden subgroup problem. Previous work has identified the optimal single copy measurement for the hidden subgroup problem over abelian groups as well as for the non-abelian problem in the setting where the subgroups are restricted to be all conjugate to each other. Here we describe the optimal single copy measurement for the hidden subgroup problem when all of the subgroups of the group are given with equal a priori probability. The optimal measurement is seen to be a hybrid of the two previously discovered single copy optimal measurements for the hidden subgroup problem.Comment: 8 pages. Error in main proof fixe

    Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces

    Get PDF
    The electronic structure of benzene on graphite (0001) is computed using the GW approximation for the electron self-energy. The benzene quasiparticle energy gap is predicted to be 7.2 eV on graphite, substantially reduced from its calculated gas-phase value of 10.5 eV. This decrease is caused by a change in electronic correlation energy, an effect completely absent from the corresponding Kohn-Sham gap. For weakly-coupled molecules, this correlation energy change is seen to be well described by a surface polarization effect. A classical image potential model illustrates trends for other conjugated molecules on graphite.Comment: 4 pages, 3 figures, 2 table

    Interactions of Bacillus Mojavensis and Fusarium Verticillioides With a Benzoxazolinone (Boa) and Its Transformation Product, Apo

    Get PDF
    En:Journal of Chemical Ecology (2007, vol. 33, n. 10, p. 1885-1897)The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study. =580 $aEn:Journal of Chemical Ecolog

    Previous attentional set can induce an attentional blink with task-irrelevant initial targets

    Get PDF
    Identification of a second target is often impaired by the requirement to process a prior target in a rapid serial visual presentation (RSVP). This is termed the attentional blink. Even when the first target is task-irrelevant an attentional blink may occur providing this first target shares similar features with the second target (contingent capture). An RSVP experiment was undertaken to assess whether this first target can still cause an attentional blink when it did not require a response and did not share any features with the following target. The results revealed that such task-irrelevant targets can induce an attentional blink providing that they were task-relevant on a previous block of trials. This suggests that irrelevant focal stimuli can distract attention on the basis of a previous attentional set

    Quantum Computational Complexity in the Presence of Closed Timelike Curves

    Full text link
    Quantum computation with quantum data that can traverse closed timelike curves represents a new physical model of computation. We argue that a model of quantum computation in the presence of closed timelike curves can be formulated which represents a valid quantification of resources given the ability to construct compact regions of closed timelike curves. The notion of self-consistent evolution for quantum computers whose components follow closed timelike curves, as pointed out by Deutsch [Phys. Rev. D {\bf 44}, 3197 (1991)], implies that the evolution of the chronology respecting components which interact with the closed timelike curve components is nonlinear. We demonstrate that this nonlinearity can be used to efficiently solve computational problems which are generally thought to be intractable. In particular we demonstrate that a quantum computer which has access to closed timelike curve qubits can solve NP-complete problems with only a polynomial number of quantum gates.Comment: 8 pages, 2 figures. Minor changes and typos fixed. Reference adde

    Electronic states and Landau levels in graphene stacks

    Full text link
    We analyze, within a minimal model that allows analytical calculations, the electronic structure and Landau levels of graphene multi-layers with different stacking orders. We find, among other results, that electrostatic effects can induce a strongly divergent density of states in bi- and tri-layers, reminiscent of one-dimensional systems. The density of states at the surface of semi-infinite stacks, on the other hand, may vanish at low energies, or show a band of surface states, depending on the stacking order

    Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds

    Full text link
    We prove a concise factor-of-2 estimate for the failure rate of optimally distinguishing an arbitrary ensemble of mixed quantum states, generalizing work of Holevo [Theor. Probab. Appl. 23, 411 (1978)] and Curlander [Ph.D. Thesis, MIT, 1979]. A modification to the minimal principle of Cocha and Poor [Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (Rinton, Princeton, NJ, 2003)] is used to derive a suboptimal measurement which has an error rate within a factor of 2 of the optimal by construction. This measurement is quadratically weighted and has appeared as the first iterate of a sequence of measurements proposed by Jezek et al. [Phys. Rev. A 65, 060301 (2002)]. Unlike the so-called pretty good measurement, it coincides with Holevo's asymptotically optimal measurement in the case of nonequiprobable pure states. A quadratically weighted version of the measurement bound by Barnum and Knill [J. Math. Phys. 43, 2097 (2002)] is proven. Bounds on the distinguishability of syndromes in the sense of Schumacher and Westmoreland [Phys. Rev. A 56, 131 (1997)] appear as a corollary. An appendix relates our bounds to the trace-Jensen inequality.Comment: It was not realized at the time of publication that the lower bound of Theorem 10 has a simple generalization using matrix monotonicity (See [J. Math. Phys. 50, 062102]). Furthermore, this generalization is a trivial variation of a previously-obtained bound of Ogawa and Nagaoka [IEEE Trans. Inf. Theory 45, 2486-2489 (1999)], which had been overlooked by the autho

    The Communication Cost of Simulating Bell Correlations

    Full text link
    What classical resources are required to simulate quantum correlations? For the simplest and most important case of local projective measurements on an entangled Bell pair state, we show that exact simulation is possible using local hidden variables augmented by just one bit of classical communication. Certain quantum teleportation experiments, which teleport a single qubit, therefore admit a local hidden variables model.Comment: 4 pages, 2 figures; reference adde

    Implications of Qudit Superselection rules for the Theory of Decoherence-free Subsystems

    Full text link
    The use of d-state systems, or qudits, in quantum information processing is discussed. Three-state and higher dimensional quantum systems are known to have very different properties from two-state systems, i.e., qubits. In particular there exist qudit states which are not equivalent under local unitary transformations unless a selection rule is violated. This observation is shown to be an important factor in the theory of decoherence-free, or noiseless, subsystems. Experimentally observable consequences and methods for distinguishing these states are also provided, including the explicit construction of new decoherence-free or noiseless subsystems from qutrits. Implications for simulating quantum systems with quantum systems are also discussed.Comment: 13 pages, 1 figures, Version 2: Typos corrected, references fixed and new ones added, also includes referees suggested changes and a new exampl
    corecore