The use of d-state systems, or qudits, in quantum information processing is
discussed. Three-state and higher dimensional quantum systems are known to have
very different properties from two-state systems, i.e., qubits. In particular
there exist qudit states which are not equivalent under local unitary
transformations unless a selection rule is violated. This observation is shown
to be an important factor in the theory of decoherence-free, or noiseless,
subsystems. Experimentally observable consequences and methods for
distinguishing these states are also provided, including the explicit
construction of new decoherence-free or noiseless subsystems from qutrits.
Implications for simulating quantum systems with quantum systems are also
discussed.Comment: 13 pages, 1 figures, Version 2: Typos corrected, references fixed and
new ones added, also includes referees suggested changes and a new exampl