87 research outputs found

    Stochastic methods for solving high-dimensional partial differential equations

    Full text link
    We propose algorithms for solving high-dimensional Partial Differential Equations (PDEs) that combine a probabilistic interpretation of PDEs, through Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and time-integration schemes are used to estimate pointwise evaluations of the solution of a PDE. We use a sequential control variates algorithm, where control variates are constructed based on successive approximations of the solution of the PDE. Two different algorithms are proposed, combining in different ways the sequential control variates algorithm and adaptive sparse interpolation. Numerical examples will illustrate the behavior of these algorithms

    Regularization of Linear Ill-posed Problems by the Augmented Lagrangian Method and Variational Inequalities

    Full text link
    We study the application of the Augmented Lagrangian Method to the solution of linear ill-posed problems. Previously, linear convergence rates with respect to the Bregman distance have been derived under the classical assumption of a standard source condition. Using the method of variational inequalities, we extend these results in this paper to convergence rates of lower order, both for the case of an a priori parameter choice and an a posteriori choice based on Morozov's discrepancy principle. In addition, our approach allows the derivation of convergence rates with respect to distance measures different from the Bregman distance. As a particular application, we consider sparsity promoting regularization, where we derive a range of convergence rates with respect to the norm under the assumption of restricted injectivity in conjunction with generalized source conditions of H\"older type

    Geometric methods on low-rank matrix and tensor manifolds

    Get PDF
    In this chapter we present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors

    Preconditioned ADMM with nonlinear operator constraint

    Get PDF
    We are presenting a modification of the well-known Alternating Direction Method of Multipliers (ADMM) algorithm with additional preconditioning that aims at solving convex optimisation problems with nonlinear operator constraints. Connections to the recently developed Nonlinear Primal-Dual Hybrid Gradient Method (NL-PDHGM) are presented, and the algorithm is demonstrated to handle the nonlinear inverse problem of parallel Magnetic Resonance Imaging (MRI)

    Lessons from non-canonical splicing

    Get PDF
    Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies

    Multilevel Representations of Isotropic Gaussian Random Fields on the Sphere

    No full text
    Series expansions of isotropic Gaussian random fields on S2 with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Loève expansions of isotropic random fields in terms of spherical harmonics. Their multilevel localized structure of basis functions is especially useful in adaptive algorithms. The basis functions are obtained by applying the square root of the covariance operator to spherical needlets. Localization of the resulting covariance-dependent multilevel basis is shown under decay conditions on the angular power spectrum of the random field. In addition, numerical illustrations are given and an application to random elliptic PDEs on the sphere is analyzed

    Existence of dynamical low-rank approximations to parabolic problems

    No full text
    • …
    corecore