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Abstract. We are presenting a modification of the well-known Alternat-
ing Direction Method of Multipliers (ADMM) algorithm with additional
preconditioning that aims at solving convex optimisation problems with
nonlinear operator constraints. Connections to the recently developed
Nonlinear Primal-Dual Hybrid Gradient Method (NL-PDHGM) are pre-
sented, and the algorithm is demonstrated to handle the nonlinear inverse
problem of parallel Magnetic Resonance Imaging (MRI).
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1 Introduction

Non-smooth regularisation methods are popular tools in the imaging sciences.
They allow to promote sparsity of inverse problem solutions with respect to
specific representations; they can implicitly restrict the null-space of the for-
ward operator while guaranteeing noise suppression at the same time. The most
prominent representatives of this class are total variation regularisation [19] and
`1-norm regularisation as in the broader context of compressed sensing [10, 8].

In order to solve convex, non-smooth regularisation methods with linear op-
erator constraints computationally, first-order operator splitting methods have
gained increasing interest over the last decade, see [11, 12, 3, 9] to name just a
few. Despite some recent extensions to certain types of non-convex problems [16,
14, 7, 15] there has to our knowledge only been made little progress for nonlinear
operators constraints [2, 22].

In this paper we are particularly interested in minimising non-smooth, con-
vex functionals with nonlinear operator constraints. This model covers many
interesting applications; one particular application that we are going to address
is the joint reconstruction of the spin-proton-density and coil sensitivity maps
in parallel MRI [21, 13].
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The paper is structured as follows: we will introduce the generic problem
formulation, then address its numerical minimisation via a generalised ADMM
method with linearised operator constraints. Subsequently we will show connec-
tions to the recently proposed NL-PDHGM method (indicating a local conver-
gence result of the proposed algorithm) and conclude with the joint spin-proton-
density and coil sensitivity map estimation as a numerical example.

2 Problem formulation

We consider the following generic constrained minimisation problem:

(û, v̂) = arg min
u,v

{H(u) + J(v) subject to F (u, v) = c} . (1)

Here H and J denote proper, convex and lower semi-continuous functionals, F
is a nonlinear operator and c a given function. Note that for nonlinear operators
of the form F (u, v) = G(u)− v and c = 0 problem (1) can be written as

û = arg min
u

{H(u) + J(G(u))} . (2)

In the following we want to propose a strategy for solving (1) that is based on
simultaneous linearisation of the nonlinear operator constraint and the solution
of an inexact ADMM problem.

3 Alternating direction method of multipliers

We solve (1) by alternating optimisation of the augmented Lagrange function

Lδ(u, v;µ) = H(u) + J(v) + 〈µ, F (u, v)− c〉+
δ

2
‖F (u, v)− c‖22 . (3)

Alternating minimisation of (3) in u, v and subsequent maximisation of µ via a
step of gradient ascent yields this nonlinear version of ADMM [11]:

uk+1 ∈ arg min
u

{
δ

2
‖F (u, vk)− c‖22 + 〈µk, F (u, vk)〉+H(u)

}
, (4)

vk+1 ∈ arg min
v

{
δ

2
‖F (uk+1, v)− c‖22 + 〈µk, F (uk+1, v)〉+ J(v)

}
, (5)

µk+1 = µk + δ
(
F (uk+1, vk+1)− c

)
. (6)

Not having to deal with nonlinear subproblems, we replace F (u, vk) and F (uk+1, v)
by their Taylor linearisations around uk and vk, which yields F (u, vk) ≈ F (uk, vk)+
∂uF (uk, vk)

(
u− uk

)
and F (uk+1, v) ≈ F (uk+1, vk)+∂vF (uk+1, vk)

(
v − vk

)
, re-

spectively. The updates (4) and (5) modify to

uk+1 ∈ arg min
u

{
δ

2

∥∥Aku− ck1∥∥22 + 〈µk, Aku〉+H(u)

}
, (7)

vk+1 ∈ arg min
v

{
δ

2

∥∥Bkv − ck2∥∥22 + 〈µk, Bkv〉+ J(v)

}
, (8)



Preconditioned ADMM with nonlinear operator constraint 3

with Ak := ∂uF (uk, vk), Bk := ∂vF (uk+1, vk), ck1 := c + Akuk − F (uk, vk) and
ck2 := c+Bkvk−F (uk+1, vk). Note that the updates (7) and (8) are still implicit,
regardless of H and J . In the following, we want to modify the updates such
that they become simple proximity operations.

4 Preconditioned ADMM

Based on [23], we modify (7) and (8) by adding the surrogate terms ‖uk+1 −
uk‖2

Qk
1
/2 and ‖vk+1−vk‖2

Qk
2
/2, with ‖w‖Q :=

√
〈Qw,w〉 (note that if Q is chosen

to be positive definite, ‖ · ‖Q becomes a norm). We then obtain

uk+1 ∈ arg min
u

{
δ

2

∥∥Aku− ck1∥∥22 + 〈µk, Aku〉+H(u) +
1

2
‖u− uk‖2Qk

1

}
,

vk+1 ∈ arg min
v

{
δ

2

∥∥Bkv − ck2∥∥22 + 〈µk, Bkv〉+ J(v) +
1

2
‖v − vk‖2Qk

2

}
.

If we choose Qk1 := τk1 I−δAk∗Ak with τk1 δ < 1/‖Ak‖2 and Qk2 := τk2 I−δBk∗Bk
with τk2 δ < 1/‖Bk‖2 and if we define µk := 2µk − µk−1 we obtain

uk+1 =
(
I + τk1 ∂H

)−1 (
uk − τk1Ak∗µk

)
, (9)

vk+1 =
(
I + τk2 ∂J

)−1 (
vk − τk2Bk∗

(
µk + δ

(
F (uk+1, vk)− c

)))
, (10)

with (I + α∂E)−1(w) denoting the proximity or resolvent operator

(I + α∂E)−1(w) := arg min
u

{
1

2
‖u− w‖22 + αE(u)

}
.

The entire proposed algorithm with updates (9), (10) and (6) reads as

Algorithm 1 Preconditioned ADMM with nonlinear operator constraint

Parameters: H, J, F, c
Initialization: u0, v0, µ0, δ
µ0 = µ0

while convergence criterion is not met do

Ak = ∂uF (uk, vk)
Set τk1 such that τk1 δ < 1/‖Ak‖2

uk+1 =
(
I + τk1 ∂H

)−1 (
uk − τk1Ak∗µk

)
Bk = ∂vF (uk+1, vk)
Set τk2 such that τk2 δ < 1/‖Bk‖2

vk+1 =
(
I + τk2 ∂J

)−1 (
vk − τk2Bk∗ (µk + δ

(
F (uk+1, vk)− c

)))
µk+1 = µk + δ

(
F (uk+1, vk+1)− c

)
µk+1 = 2µk+1 − µk

end while
return uk, vk, µk, µk
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5 Connection to NL-PDHGM

In the following we want to show how the algorithm simplifies in case the non-
linear operator constraint is only nonlinear in one variable, which is sufficient
for problems of the form (2). Without loss of generality we consider constraints
of the form F (u, v) = G(u) − v, where G represents a nonlinear operator in u.
Then we have Ak = JG(uk) (with JG(uk) denoting the Jacobi matrix of G at
uk), Bk = −I and if we further choose τk2 = 1/δ for all k, update (10) reads

vk+1 =

(
I +

1

δ
∂J

)−1(
G(uk+1) +

1

δ
µk
)

.

Applying Moreau’s identity [18] b =
(
I + 1

δ∂J
)−1

(b) + 1
δ (I + δ∂J∗)−1(δb) yields

µk+1 = (I + δ∂J∗)
−1 (

µk + δG(uk+1)
)

.

If we further change the order of the updates, starting with the update for µ,
the whole algorithm reads

µk+1 = (I + δ∂J∗)
−1 (

µk + δG(uk)
)

,

µk+1 = 2µk+1 − µk ,

uk+1 =
(
I + τk1 ∂H

)−1 (
uk − τk1 JG(uk)∗µk+1

)
.

Note that this algorithm is almost the same as NL-PDHGM proposed in [22] for
θ = 1, except that the extrapolation step is carried out on the dual variable µ
instead of the primal variable u. In the following we want to briefly sketch how
to prove convergence for this algorithm in analogy to [22]. We define

N(µk+1, uk+1) :=

(
∂J∗(µk+1)−∇G(uk)uk+1 − ck
∂H(uk+1) + JG(uk)∗µk+1

)
,

Lk :=

(
1
δ I JG(uk)

JG(uk)∗ 1
τk
1
I

)
,

with ck := G(uk)−JG(uk)uk. Now the algorithm is: find (µk+1, uk+1) such that

N(µk+1, uk+1) + Lk(µk+1 − µk, uk+1 − uk) 3 0.

If we exchange the order of µ and u here, i.e., reorder the rows of N , and the
rows and columns of Lk, we obtain almost the “linearised” NL-PDHGM of [22].
The difference is that the sign of J G in Lk is inverted. The only points in
[22] where the exact structure of Lk (Mxk therein) is used, are Lemma 3.1,
Lemma 3.6 and Lemma 3.10. The first two go through exactly as before with
the negated structure. Reproducing Lemma 3.10 demands bounding actual step
lengths ‖uk−uk+1‖ and ‖µk−µk+1‖ from below, near a solution for arbitrary ε >
0. A proof would go beyond the page limit of this proceeding. Let us just point
out that this can be done, implying that the convergence results of [22] apply
for this algorithm as well. This means that under somewhat technical regularity
conditions, which for TV type problems amount to Huber regularisation, local
convergence in a neighbourhood of the true solution can be guaranteed.
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6 Joint estimation of the spin-proton density and coil
sensitivities in parallel MRI

We want to demonstrate the numerical capabilities of Algorithm 1 by applying
it to the nonlinear problem of joint estimation of the spin-proton density and the
coil sensitivities in parallel MRI. The discrete problem of joint reconstruction
from sub-sampled k-space data on a rectangular grid reads


û
ĉ1
...
ĉ2

 ∈ arg min
v=(u,c1,...,cn)

1

2

n∑
j=1

‖SF(G(v))j − fj‖22 + α0R0(u) +

n∑
j=1

αjRj(cj)

 ,

where F is the 2D discrete Fourier transform, fj are the k-space measurements
for each of the n coils, S is the sub-sampling operator and Rj denote appropriate
regularisation functionals. The nonlinear operator G maps the unknown spin-
proton density u and the different coil sensitivities cj as follows [21]:

G(u, c1, . . . , cn) = (uc1, uc2, . . . , ucn)T . (11)

In order to compensate for sub-sampling artefacts in sub-sampled MRI it is com-
mon practice to use total variation as a regulariser [6, 17]. Coil sensitivities are
assumed to be smooth, cf. Figure 1, motivating a reconstruction model simi-
lar to the one proposed in [13]. We therefore choose the discrete isotropic total
variation, R0(u) = ‖∇u‖2,1, and the smooth 2-norm of the discretised gradient,
i.e. Rj(cj) := ‖∇cj‖2,2, for all j > 0, following the notation in [4]. We further
introduce regularisation parameters λj in front of the data fidelities and rescale

all regularisation parameters such that α0 + 1
n

(∑n
j=1 λj +

∑n
j=1 αj

)
= 1. In

order to realise this model via Algorithm 1 we consider the following operator
splitting strategy. We define F (u0, . . . , un, v0, . . . , v2n) as

F (u0, . . . , un, v1, . . . , vn) :=



G(u0, . . . , un)
∇u0 0 · · · 0

0 ∇u1
. . .

...
...

. . .
. . . 0

0 · · · 0 ∇un

−


v0
...
vn
...
v2n

 ,

setH(u0, . . . , un) ≡ 0, and J(v0, . . . , v2n) =
∑2n
j=0 Jj(vj) with Jj(vj) :=

λj

2 ‖SFvj−
fj‖22 for j ∈ {0, . . . , n − 1}, Jn(vn) = α0‖vn‖2,1 and Jj(vj) = αj−n‖vj‖2,2 for
j ∈ {n + 1, . . . , 2n}. Note that with these choices of functions, all the resolvent
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operations can be carried out easily. In particular, we obtain

(I + τk1 ∂H)−1(w) = w ,

(I + τk2 ∂Jj)
−1(w) = F−1

(
Fwj + τk2 λjS

T fj
1 + τk2 λjdiag(STS)

)
for j ∈ {0, . . . , n− 1} ,

(I + τk2 ∂Jn)−1(w) =
wn
‖wn‖2

max
(
‖wn‖2 − α0τ

k
2 , 0
)

,

(I + τk2 ∂Jj)
−1(w) =

wj
‖wj‖2,2

max
(
‖wj‖2,2 − αj−nτk2 , 0

)
for j ∈ {n+ 1, . . . , 2n} .

Moreover, as Bk = −I (and thus, ‖Bk‖ = 1) for all k, we can simply eliminate
τk2 by replacing it with 1/δ, similar to Section 5.

(a) Brain phantom (b) 25% sub-
sampling

1

0.5

0

(c) 1st coil (d) 2nd coil (e) 3rd coil (f) 4th coil

2

1

0

(g) 5th coil (h) 6th coil (i) 7th coil (j) 8th coil

2

1

0

Fig. 1. Figure 1(a) shows the brain phantom as described in Section 6.1. Figure 1(c)
- 1(j) show visualisations of the measured coil sensitivities of a water bottle. Figure
1(b) shows the simulated, spiral-shaped sub-sampling scheme used to sub-sample the
k-space data.
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(a) Zero-filling (b) Reconstruction u

1

0.5

0

(c) 1st coil (d) 3rd coil (e) 5th coil (f) 7th coil

2

1

0

Fig. 2. Reconstructions for noise with low noise level σ = 0.05. Despite the sub-
sampling, features of the brain phantom are very well preserved. In addition, the coil
sensitivities seem to correspond well to the original ones, despite a slight loss of con-
trast. Note that coil sensitivities remain the initial value where the signal is zero.

6.1 Experimental setup

We now want to discuss the experimental setup. We want to reconstruct the
synthetic brain phantom in Figure 1(a) from sub-sampled k-space measurements.
The numerical phantom is based on the design in [1] with a matrix size of
190 × 190. It consists of several different tissue types like cerebrospinal fluid
(CSF), gray matter (GM), white matter (WM) and cortical bone. Each pixel is
assigned a set of MR tissue properties: Relaxation times T1(x, y) and T2(x, y)
and spin density ρ(x, y). These parameters were also selected according to [1].
The MR signal s(x, y) in each pixel was then calculated by using the signal
equation of a fluid attenuation inversion recovery (FLAIR) sequence [5]:

s(x, y) = ρ(x, y)(1− 2 e−TI/T1(x,y))(1− e−TR/T1(x,y)) e−TE/T2(x,y).

The sequence parameters were selected: TR = 10000 ms, TE = 90 ms. TI was
set to 1781 ms to achieve signal nulling of CSF (Tcsf

1 log(2) with Tcsf
1 = 2569ms).

In order to generate artificial k-space measurements for each coil, we proceed
as follows. First, we produce 8 images of the brain phantom multiplied by the
measured coil sensitivity maps shown in Figure 1(c) - 1(j). The coil sensitivity
maps were generated from the measurements of a water bottle with an 8-channel
head coil array. Then we produce artificial k-space data by applying the 2D
discrete Fourier-transform to each of those individual images. Subsequently, we
sub-sample only approx. 25% of each of the k-space datasets via the spiral shown
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(a) Zero-filling (b) Reconstruction u

1

0.5

0

(c) 1st coil (d) 3rd coil (e) 5th coil (f) 7th coil

2

1

0

Fig. 3. Reconstructions for noise with high noise level σ = 0.95. Due to the large
amount of noise, higher regularisation parameters are necessary. As a consequence, fine
structures are smoothed out and in contrast to the case of little noise, compensation
of sub-sampling artefacts is less successful.

in Figure 1(b). Finally, we add Gaußian noise with standard deviation σ to the
sub-sampled data.

6.2 Computations

For the actual computations we use two noisy versions fj of the simulated k-
space data; one with small noise (σ = 0.05) and one with a high amount of noise
(σ = 0.95). As stopping criterion we simply choose a fixed number of iterations;
for both the low noise level as well as the high noise level dataset we have fixed
the number of iterations to 1500. The initial values used for the algorithm are
u0j = 1 with 1 ∈ Rl×1 being the constant one-vector, for all j ∈ {0, . . . , n}. All

other initial variables (v0, µ0, µ0) are set to zero.

Low noise level We have computed reconstructions from the noisy data with
noise level σ = 0.05 via Algorithm 1, with regularisation parameters set to λj =
0.0621, α0 = 0.0062 and αj = 0.9317 for j ∈ {1, . . . , n}. We have further created
a näıve reconstruction by averaging the individual inverse Fourier-transformed
images obtained from zero-filling the k-space data. The modulus images of the
results are visualised in Figure 2. The PSNR values for the averaged zero-filled
reconstruction is 10.2185, whereas the PSNR of the reconstruction with the
proposed method is 24.5572.
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High noise level We proceeded as in the previous section, but for noisy data
with noise level σ = 0.95. The regularisation parameters were set to λj = 0.0149,
α0 = 0.0135 and αj = 0.9716 for j ∈ {1, . . . , n}. The modulus images of the re-
sults are visualised in Figure 3. The PSNR values for the averaged zero-filled
reconstruction is 9.9621, whereas the PSNR of the reconstruction with the pro-
posed method is 16.672.

7 Conclusions & outlook

We have presented a novel algorithm that allows to compute minimisers of a
sum of convex functionals with nonlinear operator constraint. We have shown
the connection to the recently proposed NL-PDHGM algorithm which implies
local convergence results in analogy to those derived in [22]. Subsequently we
have demonstrated the computational capabilities of the algorithm by applying
it to a nonlinear joint reconstruction problem in parallel MRI.

For future work, the convergence of the algorithm in the general setting has
to be verified, and possible extensions to guarantee global convergence have to be
studied. Generalisation of stopping criteria such as a linearised primal-dual gap
will also be of interest as well. With respect to the presented parallel MRI appli-
cation, exact conditions for the convergence (like the exact norm of the bounds)
have to be verified. The impact of the algorithm- as well as the regularisation-
parameters on the reconstruction has to be analysed, and a rigorous study with
artificial and real data would also be desirable. Moreover, future research will
focus on alternative regularisation functions, e.g. based on spherical harmonics
motivated by [20]. Last but not least, other applications that can be modelled
via (1) should be considered in future research.
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