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ADAPTIVE LOW-RANK METHODS FOR PROBLEMS ON SOBOLEV SPACES
WITH ERROR CONTROL IN L2
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Abstract. Low-rank tensor methods for the approximate solution of second-order elliptic partial
differential equations in high dimensions have recently attracted significant attention. A critical issue
is to rigorously bound the error of such approximations, not with respect to a fixed finite dimensional
discrete background problem, but with respect to the exact solution of the continuous problem. While
the energy norm offers a natural error measure corresponding to the underlying operator considered
as an isomorphism from the energy space onto its dual, this norm requires a careful treatment in its
interplay with the tensor structure of the problem. In this paper we build on our previous work on
energy norm-convergent subspace-based tensor schemes contriving, however, a modified formulation
which now enforces convergence only in L2. In order to still be able to exploit the mapping properties
of elliptic operators, a crucial ingredient of our approach is the development and analysis of a suitable
asymmetric preconditioning scheme. We provide estimates for the computational complexity of the
resulting method in terms of the solution error and study the practical performance of the scheme in
numerical experiments. In both regards, we find that controlling solution errors in this weaker norm
leads to substantial simplifications and to a reduction of the actual numerical work required for a
certain error tolerance.
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1. Introduction

For a given open product domain Ω = Ω1 × . . . × Ωd ⊂ �
d, we are interested in approximately solving

problems of the form

−div(M gradu) = f in Ω, u|∂Ω = 0, (1.1)
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where M is a symmetric uniformly positive definite (d × d)-matrix over Ω. Here, we are interested in the
spatially high-dimensional regime d � 1. Specifically, our subsequent analysis is based on the assumption that
M is diagonally dominant with constant entries. However, concerning variable coefficients, all findings carry over
to diagonal matrices M = diag(M1, . . . ,Md), where the Mi are sufficiently benign functions of xi, i = 1, . . . , d.
Due to the coupling of variables when M is non-diagonal one expects that tensor approximations exhibit a
stronger rank growth when accuracy tolerances decrease. In our numerical experiments we show that this effect
can already be significant for constant tridiagonal matrices M .

For simplicity of exposition, we deliberately keep (1.1) on the level of a specific model problem. However,
what follows applies in essence also to natural variants of (1.1), for instance, when the Dirichlet boundary
conditions are replaced (partially or throughout) by Neumann conditions, as long as the type of boundary
condition remains the same on each (d− 1)-face of Ω. While above the Ωi are intervals, one could also consider
a product of d more general low-dimensional domains.

For product domains and weakly coupling diffusion matrices, the differential operator in (1.1) has formally
low rank, that is, its action only leads to a moderate increase in the ranks of suitable tensor representations.
This justifies the hope that, for instance, for separable right hand sides the solution may be approximable
efficiently by low-rank tensor expansions, where the low-dimensional factors in the rank-one summands are
not predefined basis functions but are allowed to depend on the solution. This hope is indeed supported by
substantial numerical evidence [5, 13] and by rank bounds for approximate solutions of a structured discrete
linear system obtained from a fixed discretization of the continuous problem [15, 25]. This does not, however,
provide any information on how the ranks grow when the discretization is refined. At least for diagonal M , a
rigorous quantitative interrelation between the accuracy of approximations to the continuous exact solution u
of (1.1) in appropriate function spaces and the required ranks is given in [11].

The numerical treatment of such solution-dependent basis functions still necessitates their expansion in terms
of suitable low-dimensional reference basis functions. In this combination of low-rank representations and basis
expansions of corresponding tensor components, we are thus in fact dealing with two levels of approximation.
Between these, a proper balance needs to be maintained in the convergence to the exact solution, since both
allowing large tensor ranks for coarse discretizations and using very fine discretizations with inaccurate low-rank
approximations will, especially at high accuracies, lead to excessive numerical costs. Common strategies for low-
rank approximations start from a fixed discretizations and use tensor representations as a linear algebra tool, see
e.g. [5,7,24]. Such a fixed discretization corresponds to a fixed finite reference basis for representing the tensor
components. In this setting, however, one cannot address the necessary intertwining of subspace approximation
and adaptive refinement of tensor factor representations. We thus need to deal with several closely connected
issues: obtaining a posteriori error information that can guide the adaptive refinement of the reference basis,
ensuring that the underlying representation of the differential operator does not become ill-conditioned as the
basis is refined, and avoiding inappropriately large tensor ranks.

These considerations have motivated the approach put forward in [2, 4] on a general level and in [3] with
special focus on problems of the form (1.1). A central idea there is that rigorous a posteriori error bounds driving
convergent approximation schemes should rely on a faithful approximation to the residual of the continuous
problem which, in turn, should reflect the accuracy of the approximate solution. This seems to be possible only
when exploiting the mapping properties of the operator A induced by the classical weak formulation

〈Au, v〉 :=
∫

Ω

M gradu · grad v dx = 〈f, v〉, v ∈ H1
0(Ω), (1.2)

over the space H1
0(Ω). In fact, denoting by c, C̄ the smallest and largest eigenvalue of M one has

‖A‖H1
0(Ω)→H−1(Ω) ≤ C̄, ‖A−1‖H−1(Ω)→H1

0(Ω) ≤ c−1, (1.3)

which is equivalent to saying that errors in the H1-norm can be faithfully estimated by residuals in the dual
norm ‖ · ‖H−1(Ω).
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It is unfortunately not entirely straightforward to exploit these facts for a rigorous error control of low-rank
tensor approximations. Subspace-based tensor formats, whose stability properties play an important role in
devising reliable computational routines, are not immediately amenable to spaces that are not endowed with
cross-norms, see [3] for a detailed discussion. Therefore, the strategy in [2–4] is based on transforming the problem
first to an equivalent one where the transformed operator A is an isomorphism mapping an �2-space over an
infinite product index set, which is a space endowed with a cross-norm, onto itself. This transformation requires a
Riesz basis for the energy space H1

0(Ω). A suitable basis of this type can be obtained by rescaling an orthonormal
tensor product wavelet basis of L2(Ω). Unfortunately, and this is the price to be paid, the rescaling destroys
separability of the basis functions and, as a consequence, causes the resulting operator representation A to have
infinite rank. Aside from the role of suitable recompression and coarsening operators given in [4], a key ingredient
in still constructing low-rank approximations with controlled energy norm accuracy for elliptic problems are
adaptive finite-rank rescaling operators proposed and analyzed in [3]. They are based on specially tailored
relative error bounds for exponential sum approximations to the function g(t) = t−1/2. This ultimately led
to an adaptive refinement scheme generating approximate solutions represented in hierarchical tensor formats,
convergent in energy norm with near-optimal complexity, for each fixed spatial dimension d, with respect to
ranks and representation sparsity of the tensor factors [3].

Nevertheless, the fact that the energy norm is not a cross-norm and the resulting unbounded tensor ranks
of the representation A significantly impede the control of rank growth in the iterates. The central question
addressed in the present work is therefore: Can one devise a solver that provides approximate solutions in
hierarchical tensor format at a significantly lower numerical cost by enforcing convergence only in a norm that
is weaker than the energy norm, namely ‖ · ‖L2(Ω)?

Of course, there is no hope of avoiding the above mentioned “scaling problem” completely. In one way or
another, a rigorous convergence analysis has to make use of the mapping properties of the underlying operator,
which always refers to a pair of spaces of which at least one is not endowed with a cross-norm. However, if one
has full elliptic regularity, the underlying operator is also an isomorphism from H2(Ω) ∩ H1

0(Ω) → L2(Ω) and,
by duality, also from L2(Ω) onto (H2(Ω) ∩ H1

0(Ω))′. Since Ω as a Cartesian product of open intervals (or more
generally of convex low-dimensional domains) is convex this is indeed the case.

Adhering to the basic idea in [3,4], we transform the variational problem first into an equivalent problem over
the space �2(∇d), where ∇ is a countable index set. This allows us to employ subspace-based tensor formats for
representing corresponding coefficient sequences as order-d tensors. For the convergence of the tensors in �2(∇d)
to correspond to convergence of the respective functions in L2(Ω), we now need to perform an asymmetric
preconditioning to arrive at an ideal convergent iteration for the problem on the infinite-dimensional space
�2(∇d). This central issue is addressed in Section 2. Section 3 is devoted to the precise formulation of the
new algorithm and its convergence and complexity analysis. Finally, in Section 4, the theoretical findings are
illustrated and quantified by numerical experiments.

Despite the loss of symmetry, the overall effect of the asymmetric preconditioning on the computational
complexity turns out to be favorable, regarding both the theoretical complexity estimates (as summarized in
Rem. 3.4) and the practical efficiency of the scheme – with the difference, of course, that errors are controlled
in L2(Ω) and not in H1(Ω). The relevance of an L2-error control depends mainly on the particular application:
in the context of implicit time-stepping schemes for high-dimensional parabolic problems, the L2-norm may
generally be preferable; when solving high-dimensional eigenvalue problems using inverse iteration, however,
controlling errors in H1 is crucial for ensuring the convergence of eigenvalues. Moreover, our approach extends
to singularly perturbed problems of reaction-diffusion type −εΔu + u = f where, due to boundary layers for
small ε, an L2-error bound is more meaningful.

We close this section with recalling some primarily technical preliminaries from [3, 4], where a more self-
contained exposition can be found.
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1.1. Prerequisites

1.1.1. Tensor representations

For simplicity of exposition, in what follows we focus as in [3] on problems of the form (1.1) with a constant
diffusion matrix M and Ω = (0, 1)d so that the operator

Au := −
d∑

i,j=1

mij∂i∂ju, (1.4)

with constant coefficients mij and symmetric positive definite M = (mij) ∈ �d×d satisfies (1.3). Furthermore,
to avoid certain technicalities, we impose the slightly stronger assumption that M is diagonally dominant.

In order to transform (1.1) into an equivalent problem over sequence spaces, we employ a tensor product
wavelet basis {

Ψν := ψν1 ⊗ . . .⊗ ψνd
: ν = (ν1, . . . , νd) ∈ ∇d

}
,

where {ψν}ν∈∇ is an orthonormal basis of L2(0, 1) and {2−2|ν|ψν}ν∈∇ is a Riesz basis of H2(0, 1) ∩ H1
0(0, 1).

Note that this requires, in particular, that the wavelets vanish on ∂Ω, that is, the univariate factor wavelets
satisfy ψν(0) = ψν(1) = 0, ν ∈ ∇. The corresponding wavelet representation of A is then given by the infinite
matrix

T :=
(〈Ψμ, AΨν〉

)
μ,ν∈∇d . (1.5)

Since the homogeneous boundary conditions are built into the basis {Ψν}, finding the solution u of (1.1) is
equivalent to finding its wavelet coefficient sequence

u := (uν)ν∈∇d , uν := 〈u, Ψν〉 :=
∫

Ω

uΨν dx. (1.6)

Defining g = (〈f, Ψν〉)ν∈∇d , the sequence u, in turn, is the solution of

Tu = g. (1.7)

Thus our objective is to solve (1.7). Note that the operator T is unbounded as an operator from �2(∇d) to itself,
where as usual �2(∇d) is the space of square summable sequences over the index set ∇d endowed with the norm

‖v‖ := ‖v‖�2(∇d) :=

⎛
⎝ ∑

ν∈�2(∇d)

|vν |2
⎞
⎠

1/2

.

For the moment we postpone the discussion of the choice of subspace of �2(∇d) for which (1.7) is supposed to
hold and explain first some algebraic features of (1.7). Since ∇d is a product set, we view any element v ∈ �2(∇d)
as a tensor of order d. As an operator acting on such tensors, T has finite rank. More precisely, as has been
pointed out in [3], T has the tensor representation

T =
∑

1≤n1,...,nd≤R

cn1,...,nd

⊗
i

T(i)
ni
, (1.8)

with R = 4, and

T(i)
1 := T1 =

(〈ψν , ψμ〉
)
μ,ν∈∇ = id, T(i)

2 := T2 :=
(〈ψ′

ν , ψ
′
μ〉
)
μ,ν∈∇, (1.9)

T(i)
3 := T3 :=

(〈ψν , ψ
′
μ〉
)
μ,ν∈∇, T(i)

4 := T4 :=
(〈ψ′

ν , ψμ〉
)
μ,ν∈∇. (1.10)
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Here the nonzero entries cn1,...,nd
of the sparse coefficient tensor c are given by c2,1,...,1 = m11, c1,2,1,...,1 = m22,

. . . , c3,4,1,...,1 = c4,3,1,...,1 = m12, . . . , c3,1,4,1,...,1 = c4,1,3,1,...,1 = m13, and so forth (cf. [3], Sect. 2.2). Thus, for
A as in (1.4), in general we have that R = 4. Note further that, due to the homogeneous Dirichlet boundary
conditions, integration by parts shows T3 = −T4, which gives

T3 ⊗ T4 = T4 ⊗ T3 = −T3 ⊗ T3, (1.11)

and thus a reduction to R = 3.
We shall now introduce some basic notions of tensor representations. For further details and references, we

refer to [19]. The particular representation format for the operator T chosen in (1.8) corresponds to the so-called
Tucker format for tensors of order d. Accordingly, as mentioned earlier, regarding u as a tensor of order d on
∇d =

Śd
i=1 ∇, it can be represented in terms of the Tucker format

u =
r1∑

k1=1

. . .

rd∑
kd=1

ak1,...,kd
U(1)

k1
⊗ . . .⊗ U(d)

kd
, (1.12)

where a = (ak1,...,kd
)1≤ki≤ri:i =1,...,d is called the core tensor and each matrix U(i) =

(
U(i)

νi,ki

)
νi∈∇di ,1≤ki≤ri

with orthonormal column vectors U(i)
k ∈ �2(∇di), k = 1, . . . , ri, is called the ith orthonormal mode frame (here

we admit ri = ∞, i = 1, . . . , d). We refer to [3,4] for the precise definitions and notation, to which we will adhere
in this paper as well. Of course, for an operator T on �2(∇d) and an element u ∈ �2(∇d) that are both given
as representations in the Tucker format, the image Tu can readily be expressed in the Tucker format [30] by a
combination of the core tensors and the application of the T(i)

k to the mode frames U(i)
ki

, see [4] for details.
Since the core tensor a in (1.12) still depends on d indices, for large d it will generally have far too many entries

for a direct representation. For this reason, we focus in what follows on the hierarchical Tucker format [21],
which is obtained by further decomposing a into successive compositions of third-order tensors as

a =
(
ΣDd

({B(α,k)}))
(kβ)β∈L(Dd)

:=
∑

(kγ )γ∈I(Dd)

∏
δ∈N (Dd)

B
(δ,kδ)
(kc1(δ),kc2(δ))

.

This is based on a fixed binary dimension tree Dd obtained by successive bisections of the set of coordinate
indices 0d := {1, . . . , d}, which forms the root node. Moreover, singletons {i} ∈ Dd are referred to as leaves,
and elements of Dd \ {0d, {1}, . . . , {d}

}
as interior nodes. The set of leaves is denoted by L(Dd), where we

additionally set N (Dd) := Dd \ L(Dd). The functions

ci : Dd \ L(Dd) → Dd \ {0d}, i = 1, 2,

produce the “left” and “right” children ci(α) ⊂ α of a non-leaf node α ∈ N (Dd).
With each node α ∈ Dd we associate the matricization T

(α)
u of u, obtained by rearranging the entries of

the tensor into an infinite matrix representation of a Hilbert−Schmidt operator using the indices in ∇α as row
indices. The dimensions of the ranges of these operators yield the hierarchical ranks rankα(u) := dim rangeT (α)

u

for α ∈ Dd. Except for α = 0d, where we always have rank0d
(u) ≤ 1, these are collected in the hierarchical rank

vector rank(u) = rankDd
(u) := (rankα(u))α∈Dd\{0d} and give rise to the hierarchical tensor classes

H(r) :=
{
u ∈ �2(∇d) : rankα(u) ≤ rα for all α ∈ Dd \ {0d}

}
.

For singletons {i} ∈ Dd, we briefly write ranki(u) := rank{i}(u). We denote by R ⊂ (�0 ∪ {∞})Dd\{0d} the set
of hierarchical rank vectors r for which there exists u such that rank(u) = r.

Again, there is an analogous hierarchical format for operators, i.e., the core tensor c in (1.8) is further
decomposed as a product of tensors of order three, and the format is consistent when applying an operator to
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a tensor, see [4]. The hierarchical ranks in the representation of c will be denoted by Rα, α ∈ Dd. In what
follows we are mainly interested in two scenarios, namely that M = diag (mii)d

i=1 for some mii > 0, or that
M is tridiagonal with constant diagonal vectors. In the former case, we have R = 2 as well as Rα ≤ 2. For
tridiagonal M , in general one obtains R = 4 and Rα ≤ 5, but in the present case, due to (1.11), this reduces to
R = 3 and Rα ≤ 4. We refer to ([3], Ex. 3.2) for more details.

1.1.2. Recompression and coarsening

The basic strategy suggested in [3, 4], which we follow here as well, is to solve (1.7) iteratively. At a first
glance this looks promising since the application of the finite-rank operator T to a finite-rank iterate produces
(at least for a suitably truncated finite-rank right hand side) a new iterate of finite rank. As mentioned earlier,
at least two principal obstructions arise. First, the action of the operator as well as the summation of finite
rank tensors increase the tensor ranks in each step, so that a straightforward iteration would give rise to
exponentially increasing ranks. Second, increasing the ranks of tensor expansions has to go hand in hand with
growing the supports of increasingly more accurately resolved mode frames. In this section we briefly recall
from [3,4] how to deal with these issues. The key point is to devise suitable tensor recompression and coarsening
schemes that automatically find near-best approximations from the classes H(r) whose mode frames have near-
minimal supports. Again we refer to [4] for a detailed derivation and recall here the main results for later
use. The hierarchical singular value decomposition (HSVD) (cf. [16]) allows one to identify for given tensor v
a system of mode frames, denoted by U(v), whose rank truncation yields near-optimal approximations. We
denote by PU(v),r v the result of truncating a HSVD of v to ranks r. Using computable upper bounds λr(v) for
‖v − PU(v),r v‖, one can determine ranks r(u, η) ∈ arg min

{|r|∞ : r ∈ R, λr(u) ≤ η
}

that ensure the validity of
a given accuracy tolerance η > 0, which we use to define the recompression operator P̂η v := PU(v),r(v,η) v.

The definition of a coarsening operator producing near-minimal supports of mode frames in a sense to be
made precise later, is a little more involved and based on the notion of tensor contractions which, for i = 1, . . . , d,
are given by

π(i)(v) =
(
π(i)

νi
(v)

)
νi∈∇ :=

⎛
⎜⎝
⎛
⎝ ∑

ν1,...,νi−1,νi+1,...,νd

|vν1,...,νi−1,νi,νi+1,...,νd
|2
⎞
⎠

1
2
⎞
⎟⎠

νi∈∇

∈ �2(∇).

A naive evaluation of these quantities requires a (d− 1)-dimensional summation, which would be inacceptable.
However, the identity

π(i)
ν (v) =

(∑
k

∣∣U(i)
ν,k

∣∣2∣∣σ(i)
k

∣∣2)
1
2

,

where σ(i)
k are the mode-i singular values and {U(i)

k } the corresponding mode frames from U(v), facilitates an
evaluation at a cost proportional to ranki(v) for each ν ∈ �2(∇), see [4]. The quantities

suppi(v) := supp
(
π(i)(v)

)
allow one to quantify the the actual number of nonzero entries of mode frames, and we have suppv ⊆
Śd

i=1 suppi(v). With the aid of a total ordering of the entries of all π(i)(v), i = 1, . . . , d, one can find for
a given v a product set Λ(v;N), with sum of coordinatewise cardinalities at most N , such that the restriction
RΛ(v;N) of v to Λ(v;N) (meaning that the entries vν are set to zero for ν /∈ Λ(v;N)) satisfies

‖v − RΛ(v;N) v‖ ≤ μN (v) ≤
√
d inf

{‖v − RΛ̂ v‖ : Λ̂ = Λ̂1 × . . .× Λ̂d,
∑

i #(Λ̂i) ≤ N
}
,

where the error estimate μN (v) can be computed directly from the sequences π(i)(v). Setting N(v, η) :=
min

{
N : μN (v) ≤ η

}
, we define the thresholding procedure

Ĉη(v) := RΛ(v;N(v;η)) v. (1.13)
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To assess the performance of the recompression and coarsening operators P̂η, Ĉη, as in [4] we define

σr,H(v) := inf
{‖v − w‖ : w ∈ H(r) with r ∈ R, |r|∞ ≤ r},

and, for a given growth sequence γ =
(
γ(n)

)
n∈�0

with γ(0) = 1 and γ(n) → ∞ as n→ ∞, we consider

A(γ) = AH(γ) :=
{
v ∈ �2(∇d) : sup

r∈�0

γ(r)σr,H(v) =: |v|AH(γ)<∞
}
,

where we set ‖v‖AH(γ) := ‖v‖+|v|AH(γ). We always require that ργ := supn∈� γ(n)/γ(n−1) <∞, which covers
at most exponential growth. Thus, hierarchical ranks of size at most γ−1(|v|AH(γ)/η) suffice to approximate
v ∈ A(γ) within accuracy η.

Similarly, defining the error of best N -term approximation

σN (v) := inf
Λ⊂∇d̂

#Λ≤N

‖v − RΛ v‖,

we consider for s > 0 the classical approximation classes As = As(∇d̂), d̂ ∈ �, comprised of all v ∈ �2(∇d̂) for
which the quasi-norm

‖v‖As(∇d̂) := sup
N∈�0

(N + 1)sσN (v)

is finite. Hence, using this concept for d̂ = 1, when the mode frames belong to As(∇), they can be approximated
within accuracy η by finitely supported vectors of size O(η−1/s).

The relevant facts describing the performance of P̂η and Ĉη can be summarized as follows [4].

Theorem 1.1. Let u,v ∈ �2(∇d) with u ∈ AH(γ), π(i)(u) ∈ As for i = 1, . . . , d, and ‖u − v‖ ≤ η. Let
κP =

√
2d− 3 and κC =

√
d. Then, for any fixed α > 0,

wη := ĈκC(κP+1)(1+α)η

(
P̂κP(1+α)η(v)

)
satisfies

‖u− wη‖ ≤ C(α, κP, κC) η, (1.14)

where C(α, κP, κC) :=
(
1 + κP(1 + α) + κC(κP + 1)(1 + α)

)
, as well as

|rank(wη)|∞ ≤ γ−1
(
ργ‖u‖AH(γ)/(αη)

)
, ‖wη‖AH(γ) ≤ C1‖u‖AH(γ), (1.15)

with C1 = (α−1(1 + κP(1 + α)) + 1) and

d∑
i=1

# suppi(wη) ≤ 2η−
1
s dα− 1

s

(
d∑

i=1

‖π(i)(u)‖As

) 1
s

,

d∑
i=1

‖π(i)(wη)‖As ≤ C2

d∑
i=1

‖π(i)(u)‖As ,

(1.16)

with C2 = 2s(1 + 3s) + 24sα−1
(
1 + κP(1 + α) + κC(κP + 1)(1 + α)

)
dmax{1,s}.

Remark 1.2. Both P̂η and Ĉη require a hierarchical singular value decomposition of their inputs. For a finitely
supported v given in hierarchical format, the number of operations required for obtaining such a decomposition
is bounded, up to a fixed multiplicative constant, by d|rank(v)|4∞ + |rank(v)|2∞

∑d
i=1 # suppi v, see also [16].
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2. Asymmetric preconditioning

2.1. Transformation to well-conditioned systems

Following [3, 4], to iteratively solve (1.7) and hence (1.1), we first need to precondition the operator T to
obtain a well-conditioned operator equation on �2(∇d). A natural way of doing this is to exploit the mapping
properties (1.3) in combination with the fact that a suitable diagonal scaling of the L2(Ω)-wavelet basis gives
rise to a Riesz basis for H1

0(Ω). To describe this we choose for i = 1, . . . , d the scaling weights ω̂i,νi , νi ∈ ∇, such
that

ω̂i,νi ∼ 2|νi| (2.1)

where the constants are uniform in νi ∈ ∇, and set

ων := ων1,...,νd
=

(
d∑

i=1

(ω̂i,νi)
2

)1/2

, ν ∈ ∇d. (2.2)

With this sequence, we define the diagonal scaling operator

S =
(
ωνδν,μ

)
ν,μ∈∇d . (2.3)

In addition, for later reference, we define for τ ∈ � and i = 1, . . . , d on the one hand the coordinatewise scaling
operators Sτ

i : �∇d → �
∇d

by
Sτ

i v :=
(
ω̂τ

i,νi
vν

)
ν∈∇d and Si := S1

i , (2.4)

and on the other hand, the corresponding low-dimensional scaling operators Ŝτ
i : �∇ → �

∇ by

Ŝτ
i v̂ :=

(
ω̂τ

i,νi
v̂νi

)
νi∈∇ and Ŝi := Ŝ1

i . (2.5)

It is well-known that under the above assumptions on the basis {Ψν}, the rescaled mapping S−1TS−1 is
an isomorphism from �2(∇d) onto itself, which is related to the fact that u ∈ H1

0(Ω) if and only if Su ∈
�2(∇d), where u is the wavelet coefficient tensor with respect to the L2(Ω)-basis. Note that this implies, in
particular, that for each ν ∈ ∇d the quantity (Tu)ν is well-defined when the corresponding function u belongs
to H1

0(Ω). These facts have been exploited in [3] by replacing (1.7) by the (symmetrically) preconditioned system
S−1TS−1u(1) = S−1g, i.e., one actually solves for the H1(Ω)-scaled coefficient array u(1) = Su.

In this paper we follow a different direction, seeking directly the L2(Ω)-wavelet coefficients 〈u, Ψν〉 of the
solution u to (1.1), and thus of (1.7). Here we exploit that (Tu)ν is, for every ν ∈ ∇d, still well-defined for
arbitrary u ∈ �2(∇d) provided that the wavelet basis functions are sufficiently regular. Our approach is based
on the following facts.

Theorem 2.1. Assume that the univariate wavelet basis {ψν} is L2(0, 1)-orthonormal and that {2−2|ν|ψν} is
a Riesz basis of H2(0, 1)∩H1

0(0, 1). Then, for S,T defined by (2.3), (1.8), respectively, the infinite matrix S−2T
is an isomorpishm from �2(∇d) onto itself, i.e., there exist constants 0 < c ≤ C <∞ such that

c‖v‖ ≤ ‖S−2Tv‖ ≤ C‖v‖, v ∈ �2(∇d). (2.6)

Moreover, when M is diagonal and ω̂i,νi ∼
√
mii 2|νi| with constants that are uniform in d, i = 1, . . . , d and νi,

then the constants c, C are independent of the spatial dimension d.

Remark 2.2. The property that the univariate rescaled wavelet basis is a Riesz basis for H2(0, 1) ∩ H1
0(0, 1),

required in Theorem 2.1, is satisfied, in particular, under the following conditions: the univariate wavelet (or
multiwavelet) basis functions are L2-orthonormal, piecewise polynomial, belong to C1(0, 1), vanish at the end-
points of the interval, and the scaling functions have the polynomial reproduction property. To describe this
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latter property consider any closed subinterval of [0, 1] on which the scaling functions of that level are polyno-
mial. Then, for each level and any such subinterval contained in the interior, all polynomials of degree two are
reproduced. On those such subintervals containing an endpoint of [0, 1], only those polynomials are reproduced
that vanish at that endpoint. Note that a piecewise polynomial in C1(0, 1) belongs to H2+τ (0, 1) for any τ < 1

2 .
With the above properties the validity of suitable inverse and direct estimates can be verified which, combined
with orthogonality, imply the required Riesz basis property, see [10].

Proof. Note that V := H1
0(Ω) ∩ H2(Ω) =

⋂d
i=1 L2(0, 1) ⊗ . . . ⊗ (H1

0(0, 1) ∩ H2(0, 1)) ⊗ . . . ⊗ L2(0, 1). Thus the
rescaled wavelets ω−2

ν Ψν , ν ∈ ∇d, form a Riesz basis for V , and they are therefore the dual of a Riesz-basis
for V ′ = (H1

0(Ω) ∩ H2(Ω))′, i.e., for w ∈ V ′ one has ‖w‖V ′ ∼ ‖(〈w, ω−2
ν Ψν〉)ν∈∇d‖�2(∇d). Due to the convexity

of Ω and the fact that M is constant, the operator A maps V one-to-one and onto L2(Ω) and hence, by
duality, from L2(Ω) onto V ′. Since (〈Au, ω−2

ν Ψν〉)ν∈∇d = S−2Tu and ‖Au‖V ′ ∼ ‖u‖L2(Ω) ∼ ‖u‖�2(∇d), the
norm equivalence (2.6) follows.

To prove the rest of the assertion for diagonal M , by the choice of ω̂i,νi (cf. [3, 12]), it suffices to confine the
discussion to the Laplacian on H1

0(Ω), where

T =
d∑

i=1

T(i)
2 :=

d∑
i=1

id1 ⊗ . . .⊗ idi−1 ⊗ T2 ⊗ idi+1 ⊗ . . .⊗ idd

with T2 as in (1.9). In order to estimate the constants c, C in (2.6) in this case, we hence need to find bounds
for the extreme singular values of S−2T, or equivalently, the eigenvalues of S−2TT∗S−2 = S−2T2S−2. To this
end, recall that

S2 =
d∑

i=1

S2
i =

d∑
i=1

id1 ⊗ . . .⊗ idi−1 ⊗ Ŝ2
i ⊗ idi+1 ⊗ . . .⊗ idd.

The desired statement follows if we can show that, for any compactly supported v,

c2〈S4v,v〉 ≤ 〈T2v,v〉 ≤ C2〈S4v,v〉 (2.7)

with suitable c, C, since then the singular values of S−2T are contained in [c, C].
We now estimate the summands in the expansions

S4 =
d∑

i,j=1

S2
i S

2
j , T2 =

d∑
i,j=1

T(i)
2 T(j)

2

separately and then add the different contributions to obtain (2.7) with c, C independent of d. If i �= j, we have
c̃, C̃ such that

c̃2 Ŝ2
i ⊗ Ŝ2

j ≤ T2 ⊗ T2 ≤ C̃2 Ŝ2
i ⊗ Ŝ2

j

in the sense, analogously to (2.7), of inner products with compactly supported sequences on ∇2; here we need
only that {ψν} is an orthonormal basis of L2(0, 1) and {2−|ν|ψν} is a Riesz basis of H1

0(0, 1).
The case i = j is, however, more involved: in general, we do not have c̃2 Ŝ4

i ≤ T2
2 ≤ C̃2 Ŝ4

i with the same c̃, C̃.
Now we use in addition that {2−2|ν|ψν} is a Riesz basis of V1 := H2(0, 1)∩H1

0(0, 1). Using also L2-orthonormality,
we obtain

T2
2,μν =

∑
λ

〈ψ′
μ, ψ

′
λ〉〈ψ′

λ, ψ
′
ν〉 =

∑
λ

〈ψ′′
μ, ψλ〉〈ψλ, ψ

′′
ν 〉 = 〈ψ′′

μ, ψ
′′
ν 〉.

We now verify that ‖u′′‖L2(0,1) is a norm on V1 by comparison with the standard norm ‖u‖2
V1

:= ‖u‖2
L2(0,1) +

‖u′‖2
L2(0,1) + ‖u′′‖2

L2(0,1). By the Poincaré inequality, ‖u′′‖L2(0,1) � ‖u′ − ∫ 1

0
u′ dx‖L2(0,1) = ‖u′‖L2(0,1), where

we have used that
∫ 1

0 u
′ dx = 0 as a consequence of u ∈ H1

0(0, 1). By the Poincaré−Friedrichs inequality,
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‖u′‖L2(0,1) � ‖u‖L2(0,1). Hence ‖u′′‖L2(0,1) ∼ ‖u‖V1. By the Riesz basis property for V1, we thus have ĉ, Ĉ such
that

ĉ2 Ŝ4
i ≤ T2

2 ≤ Ĉ2 Ŝ4
i .

We thus obtain (2.7) with c = min{c̃, ĉ}, C = max{c̃, Ĉ}, which are in particular independent of d. �

Remark 2.3. Clearly, unlike the symmetrically preconditioned version S−1TS−1 considered in [3], S−2T is in
general nonsymmetric. It is generally also nonnormal, since normality would require ‖S−2Tv‖ = ‖TS−2v‖ for
any v ∈ �2(∇d) and hence, in particular,∑

μ

(
ω−2

μ Tμν

)2 = ω−4
ν

∑
μ

(
Tμν

)2
, ν ∈ ∇d,

which holds only for very specific choices of {Ψν} (e.g., for a basis of eigenfunctions of A).

Remark 2.4. As a consequence of Theorem 2.1, for suitable ω > 0 the Jacobi-type iteration

uj+1 = uj − ωS−2(Tuj − g) (2.8)

converges in �2(∇d), so that the corresponding wavelet expansions uj converge in L2(Ω). The desired error control
in L2, with all approximations performed with respect to an equivalent norm, therefore requires the asymmetric
preconditioning, whereas the symmetrically preconditioned iteration considered in [3] leads to control of all
arising errors in H1-norm.

Our envisaged numerical scheme may be viewed as a perturbed version of the iteration (2.8). The pertur-
bations result from approximating all quantities by finitely supported sequences and from additional low-rank
approximations in hierarchical tensor format. While the asymmetric preconditioning by S−2 causes the loss of
symmetry it has the following advantage: the application of the finite-rank operator T to a finite-rank iterate
uj increases the output rank by at most a factor maxα∈Dd

Rα, which is determined by the diffusion matrix
M and can therefore implicitly depend on d. Concerning cases of interest where this factor is also independent
of d, we refer to the discussion at the end of Section 1.1.1. The scaling operator S−2, however, has infinite
rank so that the construction of a finite-rank approximation to the scaled residual S−2(Tuj − g) must involve
a substantial rank reduction. For finding a good compromise between accuracy and rank size, Theorem 1.1 is
pivotal. Note that in the symmetric case S−1TS−1, the rank-inflating scaling operation has to be done twice,
with corresponding consequences concerning computational complexity, see Remark 3.4 below. The effect of a
one-sided scaling will later be quantified, in addition to an analytical assessment, by our numerical experiments.

Our strategy for producing an approximate finite-rank residual is similar in spirit to the approach in [3] for
the symmetric case, namely to approximate the scaling operator S−2 by a finite-rank operator. The foundation
of this approximation is given in the next section.

2.2. Low-rank preconditioner

Rather than approximately applying S−1 twice we find a direct finite-rank approximation for S−2 with the
aid of the following relative error estimate for exponential sum approximation.

Theorem 2.5. Let δ ∈ (0, 1) and

0 < h ≤ sup
b∈(0,π/2)

2πb
4 + |ln δ| + |ln cos b| , α(x) := ln(1 + ex), w(x) := (1 + e−x)−1. (2.9)

Let n+ := �h−1|ln(1
2δ)|� and

ϕh,n(t) :=
n+∑

k=−n

hw(kh) e−α(kh) t, ϕh,∞(t) := lim
n→∞ϕh,n(t). (2.10)



ADAPTIVE LOW-RANK METHODS FOR PROBLEMS ON SOBOLEV SPACES WITH ERROR CONTROL IN L2 1117

Then ∣∣t−1 − ϕh,∞(t)
∣∣ ≤ δ t−1 for all t ∈ [1,∞), (2.11)

and furthermore, for any ε > 0 and n ≥ �h−1|ln ε|�, we have∣∣ϕh,n(t) − ϕh,∞(t)
∣∣ ≤ ε for all t ∈ [1,∞). (2.12)

Consequently, for η > 0, T > 1, and n ≥ �h−1(|ln η| + lnT )�, we have∣∣ϕh,n(t) − ϕh,∞(t)
∣∣ ≤ η t−1 for all t ∈ [1, T ]. (2.13)

Note that the supremum in (2.9) is attained for any δ > 0.

Proof. Our starting point is the integral representation (cf. [20])

1
r

=
∫ ∞

0

e−rt dt =
∫ ∞

−∞
e−r ln(1+ex) dx

1 + e−x
· (2.14)

The integrand admits an analytic extension in the strip {x+ iy : x ∈ �, |y| < π/2}. Our aim is to apply ([29],
Thm. 3.2.1), which gives ∣∣∣∣∣1t −

∑
k∈�

hω(kh)e−α(kh) t

∣∣∣∣∣ ≤ Nb
e−πb/h

2 sinh(πb/h)
,

where

Nb :=
∫
�

∣∣∣∣∣e
−t ln(1+ ex+ib)

1 + e−(x + ib)

∣∣∣∣∣ dx+
∫
�

∣∣∣∣∣e
−t ln(1+ ex−ib)

1 + e−(x−ib)

∣∣∣∣∣ dx, b ∈ (0, π/2).

We thus need a suitable estimate for Nb. Note that |1 + ex±ib|2 ≥ 1 + e2x ≥ 1
2 (1 + ex)2 and |ln(1 + ex± ib)| =

ln(1 + ex cos b). Furthermore, for x ≥ 0 we obtain 1 + ex cos b ≥ ex cos b from comparing the respective series
expansions, hence ln(1+ex cos b) ≥ x cos b for x ≥ 0. For x ≤ 0, we observe that ln(1+y) ≥ 1

2y for any y ∈ [0, 1],
and hence ln(1 + ex cos b) ≥ 1

2x cos b for x ≤ 0.
For such b, we now obtain

∫
�+

∣∣∣∣∣e
−t ln(1+ex±ib)

1 + e−(x±ib)

∣∣∣∣∣ dx ≤ 2
∫
�+

e−tx cos b

1 + e−x
dx ≤ 2

∫
�+

e−tx cos b dx ≤ 2(t cos b)−1

as well as ∫
�−

∣∣∣∣∣e
−t ln(1+ex±ib)

1 + e−(x±ib)

∣∣∣∣∣ dx ≤ 2
∫
�+

e−
t
2 e−x cos b

1 + ex
dx = 2

∫ 1

0

e−
t
2 ξ cos b

(1 + ξ−1)ξ
dξ ≤ 4(t cos b)−1,

where we have used the substitution x = − ln ξ.
Applying ([29], Thm. 3.2.1), we thus obtain∣∣∣∣∣1t −

∑
k∈�

hw(kh)e−α(kh) t

∣∣∣∣∣ ≤ 12(t cos b)−1 e−πb/h

2 sinh(πb/h)
≤ 24(t cos b)−1e−2πb/h ≤ 1

2
t−1δ

for the range of h given in the assertion. Here we have used that in particular, h ≤ 2πb/ ln 2, which gives
e−πb/h/(2 sinh(πb/h)) ≤ 2e−2πb/h, and that ln 48 < 4.

The estimates for n+ and n follow from the decay of the integrand on �: on the one hand, we have

∑
k>n+

hw(kh)e−α(kh) t ≤ h

∫ ∞

n+
e−txh dx ≤ t−1

∫ ∞

n+ht

e−x dx ≤ t−1e−n+h.



1118 M. BACHMAYR AND W. DAHMEN

The expression on the right hand side is bounded by 1
2 t

−1δ for n+ ≥ h−1(ln 2 + |ln δ|), which yields (2.11). On
the other hand, ∑

k<−n

hw(kh)e−α(kh) t ≤
∫ ∞

nh

e−x dx ≤ e−nh,

and the expression on the right hand side is bounded by t−1η for all t ∈ [1, T ] for n ≥ h−1(|ln η| + lnT ). �

Remark 2.6. The integral representation (2.14) was also used in [20], where bounds on the absolute error
are obtained by symmetric truncation of sinc approximations. A direct use of these estimates to bound relative
errors as required for our purposes, however, would lead to a substantially less favorable result, since an absolute
error tolerance would need to shrink with increasing range T . We thus instead directly derive a relative error
bound.

Moreover, note that a related but slightly different relative error bound, for approximation of t−1 on (0, 1],
was derived for a different purpose in [6]. Compared to a direct application of the latter result, which would
involve a rescaling of coefficients in dependence on T , our above bound has the advantage that while keeping the
upper summation index n+ fixed, we can realize arbitrarily good approximations to a scaling operator equivalent
to S−2 by simply adding additional separable terms. Although it may be possible to alternatively derive a result
very similar to Theorem 2.5 using the approach of [6], the required effort appears to be comparable to the above
direct argument.

In other works, preconditioners for low-rank tensor methods for fixed discretizations of second-order problems
have been proposed, for instance in [1, 5, 22, 24]. However, these have not been analyzed in their overall effect
on the complexity of the solution process.

In what follows, we fix δ ∈ (0, 1) and h, n+ as in Theorem 2.5. For the corresponding ϕh,n and ϕh,∞ we define

pn,ν := ω−2
min ϕh,n

(
(ων/ωmin)2

)
, pν := lim

n→∞ pn,ν = ω−2
min ϕh,∞

(
(ων/ωmin)2

)
,

where ωmin := minν∈∇d ων . We then set

P := diag(pν), Pn := diag(pn,ν). (2.15)

Theorem 2.5 states that P, Pn have the properties

‖(P − S−2)S2‖ ≤ δ, ‖(P − Pn)S2 RΛT ‖ ≤ η for n ≥ �h−1(|ln η| + lnT )�.

In other words, P is an approximation of S−2 with a relative error bound δ, and Pn provides a finite-rank
approximation to P for any prescribed relative error bound η on compactly supported sequences. We shall use
P which, in turn, is approximated by Pn, as a substitute for S−2 in (2.8) when solving

Tu = g

by a Jacobi-type iteration. The modified idealized iteration thus has the form

uj+1 = uj − ωP(Tuj − g). (2.16)

Setting A := PT, f := Pg, this iteration will be realized in the perturbed form

uj+1 = uj − ωrj , rj ≈ (PT)uj − Pg

with a suitable approximation rj , involving Pn, of the scaled residual.
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3. Analysis of an adaptive method with error control in L2

3.1. The adaptive scheme

The adaptive scheme to be proposed next has the following routines as main constituents:

• recompress(v; η), realizing the projection P̂η(v) := PU(v),r(v,η) v from Section 1.1.2 with target accuracy
η;

• coarsen(v; η), realizing the coarsening operator Ĉη(v) from (1.13);
• rhs(η), producing an η-accurate approximation to the right hand side f ;
• apply(v; η), which yields wη of finite support and ranks such that ‖Av − wη‖ ≤ η.

For a discussion of the first three routines we refer to [3, 4] and defer the precise description of apply(v; η) to
Section 3.3. We formulate the perturbed version of the idealized iteration (2.16) in Algorithm 1.

Algorithm 1 uε = solve(A, f ; ε)

input

{
ω > 0 and ρ ∈ (0, 1) such that ‖id− ωP

1
2 TP

1
2 ‖ ≤ ρ,

cA ≥ ‖A−1‖, ε0 ≥ cA‖f‖,
κ1, κ2, κ3 ∈ (0, 1) with κ1 + κ2 + κ3 ≤ 1, and β1 ≥ 0, β2 > 0.

output uε satisfying ‖uε − u‖ ≤ ε.
1: u0 := 0, k := 0
2: while 2−kε0 > ε
3: ηk,0 := ρ2−kε0

4: wk,0 := uk

5: rk,0 := apply(wk,0;
1
2
ηk,0)− rhs( 1

2
ηk,0)

6: j ← 0
7: while cA(‖rk,j‖+ ηk,j) > κ12

−(k+1)ε0

8: wk,j+1 := coarsen

(
recompress(wk,j − ωrk,j ; β1ηk,j); β2ηk,j

)
9: j ← j + 1.

10: ηk,j := ρj+12−kε0

11: rk,j := apply(wk,j ;
1
2
ηk,j)− rhs( 1

2
ηk,j)

12: end while
13: uk+1 := coarsen

(
recompress(wk,j ; κ22

−(k+1)ε0); κ32
−(k+1)ε0

)
14: k ← k + 1
15: end while
16: uε := uk

3.2. Convergence analysis

We address first the convergence of the idealized iteration (2.16).

Remark 3.1. Since Ω is bounded, A has a purely discrete spectrum and all eigenfunctions of A belong to
H1

0(Ω). As a consequence, A = PT and P
1
2 TP

1
2 have the same spectrum, where we recall that P

1
2 is spectrally

equivalent to S−1.

Let ω > 0 be chosen such that ρ := ‖id − ωP
1
2 TP

1
2 ‖ < 1. Since the eigenvalues of id − ωP

1
2 TP

1
2 and

C := id − ωA coincide, we have
lim

k→∞
‖Ck‖ 1

k = ρ. (3.1)

Consequently, for an arbitrarily fixed ρ̃ with ρ < ρ̃ < 1, this implies the following: there exist K ∈ � and B > 0
such that

‖Ck‖ ≤ ρ̃k for k > K = K(ρ̃), ‖Ck‖ ≤ B = B(ρ̃) for k ≤ K, (3.2)
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which confirms the convergence of (2.16). It now remains to account for the additional perturbations in
Algorithm 1.

Proposition 3.2. For any given target accuracy ε > 0, Algorithm 1 terminates after finitely many steps and
yields a finitely supported tensor uε, satisfying

‖u− uε‖L2(Ω) = ‖u− uε‖ ≤ ε, (3.3)

where u is the exact solution of (1.1), whose L2-wavelet coefficient array u satisfies (1.7), and uε is the coefficient
tensor of uε.

Proof. The argument is similar to that in [4] and differs only in the treatment of the inner loop between
steps 7 and 12 in Algorithm 1. For convenience we briefly sketch the induction argument that shows that
‖uk − u‖ ≤ 2−kε0. To that end, since by step 5,

‖wk,j − u‖ ≤ ‖A−1‖‖Awk,j − f‖ ≤ cA(‖rk,j‖ + ηk,j),

condition 7 ensures that when exiting the inner loop at step 12, the approximation wk,j satisfies ‖wk,j − u‖ ≤
κ12−(k+1)ε0. To see that cA(‖rk,j‖+ ηk,j) indeed becomes as small as one wishes when j increases, one derives
from steps 5, 8, and the definition of ηk,j in step 10, that the iterates wk,j satisfy a relation of the form

wk,j+1 = wk,j − ωAwk,j + ωf + zk,j ,

where ‖zk,j‖ ≤ (β1 + β2 + ω)ηk,j =: εk,j . Using wk,j+1 − u = C(wk,j − u) + zk,j , we thus obtain, for j > K,

‖wk,j − u‖ ≤ ‖Cj‖‖wk,0 − u‖ +
j−1∑
�=0

‖Cj−1−�‖‖zk,�‖

≤ ρ̃j‖wk,0 − u‖ +
j−1−K∑

�=0

ρ̃j−1−�‖zk,�‖ +B

j−1∑
�=j−K

‖zk,�‖.

Since ‖zk,�‖ ≤ εk,� ≤ (β1 + β2 + ω)ρ�2−kε0 we conclude that for β3 := (β1 + β2 + ω),

‖wk,j − u‖ ≤ ρ̃j‖uk − u‖ +
(
(j −K)ρ̃j−1

+(1 − ρ)−1(ρ−K − 1)Bρj
)
β32−kε0

≤ {
ρ̃j +

(
(j −K)ρ̃j−1 + (1 − ρ)−1(ρ−K − 1)Bρj

)
β3

}
2−kε0. (3.4)

On the other hand, observing that

‖rk,j‖ ≤ ‖Awk,j − f‖ + ηk,j ≤ ‖A‖‖wk,j − u‖ + ηk,j ,

we see that after at most a finite number J of steps, depending only on A (i.e., on the operator A and the
chosen wavelet basis), indeed cA(‖rk,J‖ + ηk,J ) ≤ κ12−(k+1)ε0 holds, the inner loop terminates and hence
‖wk,J − u‖ ≤ κ12−(k+1)ε0. For later reference, note that J ≤ I with

I := min
{
j ≥ K : cA

(
‖A‖[ρ̃j +

(
(j −K)ρ̃j−1 + (1 − ρ)−1(ρ−K − 1)Bρj

)
β3

]
+ 2ρj+1

)
≤ κ1

2

}
· (3.5)

Since κ1 + κ2 + κ3 ≤ 1, we obtain ‖uk+1 − u‖ ≤ 2−(k+1)ε. �
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3.3. Operator approximation

Our approximate application of the high-dimensional operator A is based on the wavelet compressibility
properties of the one-dimensional operators

A(i)
2 := Ŝ−2

i T2, A(i)
3 := Ŝ−1

i T3 = −Ŝ−1
i T4, (3.6)

where the last relation holds because of (1.10) and the boundary conditions. More precisely, we make use of
the following property: there exist an s > 0 and Tn,j , j ∈ �, such that for some fixed sequences of positive
numbers β(A(i)

n ) ∈ �1 for n = 2, 3,

‖Ŝ−2
i (T2 − T2,j)‖ ≤ βj(A

(i)
2 ) 2−sj , ‖Ŝ−1

i (T3 − T3,j)‖ ≤ βj(A
(i)
3 ) 2−sj , (3.7)

where each Tn,j has at most αj(A
(i)
n ) 2j nonzero entries in each column, where α(A(i)

n ) ∈ �1 are additional fixed
sequences of positive numbers. It is convenient to scale the sequences so that ‖β(A(i)

n )‖�1 ≤ ‖A(i)
n ‖.

Note that this is slightly weaker than the usual definition of s∗-compressibility [9], since we do not require a
bound on the number of entries per row, and we shall refer to the property in (3.7) as column-s∗-compressibility.
In addition, as in [3] we assume the approximations to have the level decay property, that is, there exists a γ > 0
such that ||ν| − |μ|| > γj implies Tn,j,νμ = 0.

Our aim is to obtain wη, satisfying certain representation complexity bounds, such that ‖PTv−wη‖ ≤ η. We
make the ansatz wη = PnT̃v where Pn is the finite rank approximation to the scaling operator P from (2.15)
and T̃ is a “compressed” version of T. Specifically, based on the estimate

‖PTv − PnT̃v‖ ≤ ‖P(T − T̃)v‖ + ‖(P− Pn)T̃v‖
≤ (1 + δ)‖S−2(T − T̃)v‖ + ‖(P − Pn)T̃v‖, (3.8)

we first choose T̃ = T̃(v) depending on v to obtain a suitable bound on the first term on the right hand side,
and subsequently pick n such that the second term is sufficiently small.

The construction of T̃, based on the property (3.7), can be done in complete analogy to ([3], Sect. 4.2). The
resulting approximation is of the form

T̃ = T̃J :=
∑

n∈Kd(R)

cn
⊗

i

T̃(i)
ni
,

where T̃(1)
1 = T1 = id and for ni > 1,

T̃(i)
ni

= T̃(i,J)
ni

:=
J+1∑
p=0

T(i,J)
ni,[p] RΛ

(i)
[p]

(3.9)

with T(i)
ni,[p] := Tni,J−p, p = 0, . . . , J , and T(i)

ni,[J+1] := 0 as in (3.7). Recall from Section 1.1.2 that the operator
RΛ retains the entries of a tensor supported in Λ and replaces all others by zero. The adaptive v-dependent
formation of T̃ hinges on the choice of the index sets Λ(i)

[p] , which are constructed from the supports Λ̄(i)
j of the

best 2j-term approximations of π(i)(v). Specifically, setting Λ̄(i)
−1 := ∅, we recursively define

Λ
(i)
[p] := Λ̄(i)

p \ Λ̄(i)
p−1, p = 0, . . . , J, Λ

(i)
[J+1] := ∇ \ Λ̄(i)

J , Λ
(i)
[p] := ∅, p > J + 1.

Defining next the a posteriori error indicator

eJ(v) :=
d∑

i=1

C
(i)
A

[
J∑

p=0

(
R∑

n=2

βJ−p(A(i)
n )

)
2−s(J−p)‖R

Λ
(i)
[p]
π(i)(v)‖ +

R∑
n=2

‖A(i)
n ‖ ‖R

Λ
(i)
[J+1]

π(i)(v)‖
]
, (3.10)
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where

C
(i)
A := max

⎧⎨
⎩|aii|, 2

∑
j 
=i

‖A(j)
3 ‖|aij |,

⎫⎬
⎭ ≤ max

{
1, 2 max

j 
=i
‖A(j)

3 ‖
}
|aii|, (3.11)

one can follow the arguments in ([3], Lem. 6.10), now using (3.7), to verify that

‖S−2(T − T̃J)v‖ ≤ eJ(v). (3.12)

The heart of Algorithm 1 is the adaptive application of A. We can now specify the corresponding routine
apply(v; η) for a finitely supported input v ∈ �2(∇d) and a prescribed error tolerance η > 0. The relevant
properties are collected in the following theorem, which is a complete analog to Theorem 6.8 in [3].

Without loss of generality, for a given v we shall employ tolerances η ≤ ‖S−2T‖‖v‖, since otherwise we may
choose wη = 0. For such η, it will be convenient to define

ζ(η;v) :=
η

3‖S−2T‖‖v‖· (3.13)

Theorem 3.3. Given any v ∈ �2(∇d) of finite support and finite hierarchical ranks as well as any 0 < η ≤
‖S−2T‖‖v‖, let wη be defined as follows: choose J(η;v) as the minimal integer such that

(1 + δ)eJ(η;v)(v) ≤ η

2
, (3.14)

and set wη := Pm(η;v)T̃J(η;v)v where, with Λ̃ :=
Śd

i=1 suppi(T̃J(η;v)v),

m(η;v) :=
⌈
h−1

(|ln(ζ(η;v)| + ln max{(ων/ωmin)2 : ν ∈ Λ̃})⌉. (3.15)

Then the following statements hold:

(i) We have the estimates

‖Av − wη‖ ≤ η, (3.16)

# suppi(wη) ≤ ‖α̂‖�1η
− 1

s

(
4(2s + 2)R1+s

d∑
i=1

C
(i)
A max

n>1
‖A(i)

n ‖ ‖π(i)(v)‖As

) 1
s

, (3.17)

where α̂ := (α̂k)k∈� and α̂k := maxi∈{1,...,d} maxn>1 αk(A(i)
n ).

(ii) The outputs of apply are sparsity-stable in the sense that for i ∈ {1, . . . , d},

‖π(i)(wη)‖As ≤
(
Č

(i)
A +

23s+2

2s − 1
‖α̂‖s

�1 max
n>1

‖A(i)
n ‖C(i)

A

)
Rs(1 + δ) ‖π(i)(v)‖As , (3.18)

where C(i)
A is defined in (3.11) and

Č
(i)
A := 12 (d− 1)max

j 
=i
|ajj |

(
max
i,ni

‖A(i)
ni
‖)2. (3.19)

(iii) Denoting by Rα the hierarchical ranks in the representation of T, the hierarchical ranks of wη can be
bounded by

rankα(wη) ≤ m̂(η;v)Rα rankα(v), α ∈ Dd, (3.20)

where for n+ = n+(δ) from in Section 2.2 and m(η;v) defined in (3.15),

m̂(η;v) := 1 + n+ +m(η;v). (3.21)
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(iv) The number ops(wη) of floating point operations required to compute wη in the hierarchical Tucker format
for a given v with ranks rankα(v) = rα, α ∈ Dd \ {0d}, and r0d

= 1, scales like

ops(wη)�
∑

α∈N (Dd)

(
m̂(η;v)

)3
Rαrα

2∏
q=1

Rcq(α)rcq(α)+η−1/s
d∑

i=1

‖α̂‖�1m̂(η;v)Rri

⎛
⎝ d∑

j=1

C
(j)
A R‖π(j)(v)‖As

⎞
⎠

1/s

,

(3.22)
where the constant is independent of η,v, and d.

(v) Assume in addition that the approximations Tn,j have the level decay property. With the notation L(v) :=
max{|νi| : νi ∈ suppi(v), i = 1, . . . , d}, the scaling ranks m̂(η;v), defined in (3.21), can be bounded by

m̂(η;v) ≤ C(δ, s,A)

[
1 + L(v) + |ln η| + ln

(
d∑

i=1

‖π(i)(v)‖As

)]
. (3.23)

Remark 3.4. Comparing the above statements with Theorem 6.8 in [3] reveals several minor differences.
This concerns, for instance, the more favorable constants in (3.17). Moreover, the condition (3.14) is slightly
relaxed here and, due to the one-sided application of the scaling operator, the definition of m(η;v) in (3.15) is
somewhat less involved. The main difference lies in the rank bounds (3.20) and in the bound on the number of
operations (3.22), where m̂(η;v) enters with half the exponent of ([3], Thm. 6.8).

The proof of Theorem 3.3 differs from the proof of Theorem 6.8 in [3] only in minor technical details. In
fact, the one-sided scaling simplifies some of the arguments. We therefore give some brief comments and omit
a complete proof.

First, with Λ̃ as in Theorem 3.3, one has

‖(P− Pm(η;v))T̃v‖ ≤ ‖(P − Pm(η;v))S2 RΛ̃‖
(
eJ(η;v) + ‖S−1T‖‖v‖).

Combining this with (3.8), (3.12), and (3.15) yields

‖Av − wη‖ ≤ (1 + δ)eJ(η;v)(v) + ζ(η;v)
(
eJ(η;v)(v) + ‖S−2T‖‖v‖).

In view of (3.14), η ≤ ‖S−2T‖‖v‖, and (3.13), this confirms (3.16). The argument for (3.17) is the same as
in [3]. The slightly different constant results from the relaxed requirement (3.14) on J(η;v). The appearance of
the factor (1 + δ) in (3.18) instead of (1 + δ)2 in ([3], Thm. 6.8) results again from the one-sided scaling, which
also leads to the more favorable exponents in (3.20) and (3.22).

3.4. Complexity estimates

We have seen that Algorithm 1 converges without any specific assumptions on the solution in the sense
that a given target accuracy is reached after finitely many steps. We will show next that, under canonical
assumptions on the problem data (A, f), whenever the solution has certain sparsity properties (regarding low-
rank approximability and representations sparsity of the tensor factors), the approximate solution produced
by Algorithm 1 has similar and in a sense near-optimal sparsity properties. We proceed now formulating our
data assumptions as well as the envisaged benchmark assumptions concerning the solution. These assumptions
are not required for ensuring the convergence of the algorithm, which holds in the more general setting of
Proposition 3.2. It also needs to be emphasized that these assumptions are not explicitly used by the algorithm,
but rather exploited automatically.

From the results in [3] and Theorem 2.1, we know that the infinite matrices S−2T and S−1TS−1 are auto-
morphisms of �2(∇d). In particular, Ŝ−2

i T2 and Ŝ−1
i T2Ŝ−1

i are bounded mappings on �2(∇). This latter fact can
be interpreted as follows. Let �t2(∇) denote the weighted space {w ∈ �∇ : ‖Ŝtw‖ < ∞}, which defines a scale
of interpolation spaces. Then, the boundedness of Ŝ−1

i T2Ŝ−1
i means that Ŝ−2

i T2 : �12(∇) → �12(∇) is bounded.
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By interpolation, Ŝ−2
i T2 : �t2(∇) → �t2(∇) is bounded for t ∈ [0, 1]. This, in turn, means that Ŝt−2

i T2Ŝ−t
i

is bounded for t ∈ [0, 1], and by the same argument we obtain also that Ŝt−1
i T3Ŝ−t

i is bounded. Hence, for
t ∈ [0, 1],

‖Ŝt
iA

(i)
2 Ŝ−t

i ‖, ‖Ŝt
iA

(i)
3 Ŝ−t

i ‖ <∞ as well as ‖Stf‖ ≤ (1 + δ)‖St−2g‖ <∞. (3.24)

The excess regularity assumption made in [3] corresponds to the statement that (3.24) holds for some t > 0,
which there indeed had to be assumed. As shown by the above considerations, however, this is in our present
setting automatically satisfied for t = 1.

We now formulate our data assumptions.

Assumption 3.5. Concerning the scaled matrix representation A and the right hand side f we require the
following properties for some fixed s∗ > 0:

(i) The lower-dimensional component operators A(i)
ni , defined in (3.6), are column-s∗-compressible with the

level decay property (cf. Sect. 3.3).
(ii) The number of operations required for evaluating each entry in the approximations Tn,j as in (3.7) is

uniformly bounded.
(iii) We have an estimate cA ≥ ‖A−1‖, and the initial error estimate ε0 overestimates the true value of

‖A−1‖‖f‖ only up to some absolute multiplicative constant, i.e., ε0 � ‖A−1‖‖f‖.
(iv) The contractions of f are compressible, i.e., π(i)(f) ∈ As, i = 1, . . . , d, for any s with 0 < s < s∗.

The concrete realization of the routine rhs depends on the concrete way the right hand side is given. For details
on possible constructions of rhs, we refer to ([3], Appendix B), which justifies the following assumptions made
in subsequent complexity statements.

Assumption 3.6. The procedure rhs is assumed to have the following properties:

(v) There exists an approximation fη := rhs(η) such that ‖f − rhs(η)‖ ≤ η and the following inequalities
hold:

‖π(i)(fη)‖As ≤ Csparse‖π(i)(f)‖As , ‖Sifη‖ ≤ Creg‖Sif‖,
∑

i

# suppi(fη) ≤ Csupp d η−
1
s

(∑
i

‖π(i)(f)‖As

) 1
s

,

|rank(fη)|∞ ≤ Crank
f |ln η|bf .

Here the constants Csparse, Csupp, Creg, Crank
f > 0, bf ≥ 1, are independent of η, and Csparse, Creg, Csupp

are independent of f .
(vi) The number of operations required for evaluating rhs(η) is bounded, with a constant Cops

f (d), by ops(fη) ≤
Cops

f (d)
[|ln η|3bf + |ln η|bf η− 1

s

]
.

Next we explain the benchmark properties of the solution to which subsequent complexity statements refer.
These properties are not used by the solver.

Assumption 3.7. Concerning the approximability of the solution u, we assume:

(vii) u ∈ AH(γu) with γu(n) = edun1/bu for some du > 0, bu ≥ 1.
(viii) π(i)(u) ∈ As for i = 1, . . . , d, for any s with 0 < s < s∗.

When discussing tractability issues in the sense of complexity theory it is important to know how the data
behave with respect to the spatial dimension d.
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Assumption 3.8. In our comparison of problems for different values of d, we assume:

(ix) The following constants are independent of d: du, bu, Csparse, Csupp, Creg, Crank
f .

(x) The following quantities remain bounded independently of d: ‖A‖, ‖A−1‖; the maximum hierarchical
representation rank maxαRα of T; the quantities ‖π(i)(u)‖As in the benchmark assumptions, ‖π(i)(f)‖As

in Assumptions 3.7(v), each for i = 1, . . . , d.
(xi) In addition, we assume that Cops

f (d) as in Assumptions 3.7(vi) grows at most polynomially as d→ ∞.
(xii) There exists a choice of ρ̃ in (3.2) independent of d such that the corresponding values K(ρ̃), B(ρ̃) are

bounded independently of d as well.

The assumed d-independence of the parameters in the low-rank approximability of u in (ix) has been established
in [11] for diagonal M . The numerical results in Section 4.2.2 support the conjecture that this still holds for
certain tridiagonal M with d-independent condition number. Concerning the assumptions on ‖A‖, ‖A−1‖, see
Theorem 2.1 in Section 2.1. Concerning (xii), we know from the discussion in Section 3.2 that the existence
of K, B as in (3.2) is ensured for ρ̃ > ρ. Since the values of corresponding K and B are not explicitly quantified,
however, the a priori bound on the number of steps (3.5) serves only theoretical purposes, and we have to rely
on an a posteriori condition on the approximate residual for controlling the iteration. The concrete resulting
values of K and B may depend on the choice of basis functions. We do not have a proof that these constants
remain bounded independently of d for our examples considered in Section 4. In the numerical results given
there, however, we find that these values do not have any significant influence in practice: in the cases with
d-independent ‖A‖‖A−1‖ (and hence d-independent ρ) we do not observe any deterioration of the convergence
in the initial phase of each inner loop as d is increased. This leads us to the conjecture that K and B then
indeed remain bounded independently of d as well.

The main result of this paper reads as follows.

Theorem 3.9. Suppose that Assumptions 3.5, 3.6 hold and that Assumption 3.7 are valid for the solution u of
Au = f . Let α > 0 and let κP, κC be as in Theorem 1.1. Let the constants κ1, κ2, κ3 in Algorithm 1 be chosen as

κ1 =
(
1 + (1 + α)(κP + κC + κPκC)

)−1
,

κ2 = (1 + α)κPκ1, κ3 = κC(κP + 1)(1 + α)κ1,

and let β1 ≥ 0, β2 > 0 be arbitrary but fixed. Then the approximate solution uε produced by Algorithm 1 for
ε < ε0 satisfies

|rank(uε)|∞ ≤ (
d−1
u ln

[
2(ακ1)−1ργu ‖u‖AH(γu) ε

−1
])bu � (|ln ε| + ln d)bu , (3.25)

d∑
i=1

# suppi(uε) � d1+s−1

(
d∑

i=1

‖π(i)(u)‖As

) 1
s

ε−
1
s , (3.26)

as well as

‖uε‖AH(γu) �
√
d ‖u‖AH(γu), (3.27)

d∑
i=1

‖π(i)(uε)‖As � d1+max{1,s}
d∑

i=1

‖π(i)(u)‖As . (3.28)

The multiplicative constant in (3.27) depends only on α, those in (3.26) and (3.28) depend only on α and s.
If in addition, Assumption 3.8 hold, then for the number of required operations ops(uε), we have the estimate

ops(uε) ≤ Cda dcs−1 ln dd12c ln ln d|ln ε|2c ln d+2max{bu,bf} ε−
1
s , (3.29)

where C, a are constants independent of ε and d, and c is the smallest d-independent value such that I ≤ c ln d
for I as in (3.5). In particular, c does not depend on ε and s.
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As in [3], the proof of Theorem 3.9 has two main constituents. On the one hand, one can use Theorem 3.3
in complete analogy to the use of Theorem 6.8 in [3]. On the other hand, one has to control L(v) in (3.23). On
account of (3.24), this can be done exactly as in ([3], Sects. 6.4, 6.5).

While the theoretical bounds have the same structure as for the scheme in [3], the concrete values of the
constants are different and in fact more favorable (mainly due to the smaller exponents in (3.20) and (3.22)),
as shown also by the numerical experiments discussed in the next section.

4. Numerical realization

4.1. Approximate application of operators

We now describe some practical improvements for the approximate application of operators in low-rank form
required in Algorithm 1. Recall that for given compactly supported v and tolerance η > 0, we determine a
suitable approximation T̃ of T as well as an n such that ‖PTv − PnT̃v‖ ≤ η.

For our complexity estimates, we have assumed the choice of the parameter n to be based directly on
Theorem 2.5. This choice depends only on η and on the maximum wavelet level in the support of v, that is, on
maxν∈suppv maxi|νi|. We may, however, use the estimates in Theorem 2.5 in a slightly different way to take the
actual values of v into account, and hence make use of additional a posteriori information.

According to (3.8) we first choose, independently of n, a suitable T̃ such that (1 + δ)‖S−2(T− T̃)v‖ ≤ η
2 . It

then remains to pick n such that ‖(P−Pn)T̃v‖ ≤ η
2 ; here we can simply take into account the concrete values

of T̃v by noting that
‖(P− Pn)T̃v‖ ≤ max

ν
|pν − pn,ν|‖T̃v‖.

In view of (2.12), it thus suffices to take

n =
⌈
h−1

∣∣∣∣ln
(
ω2

minη

‖T̃v‖

)∣∣∣∣
⌉
·

This choice of n is typically substantially smaller than the theoretical upper bounds in Theorem 3.3, where we
needed to take additional measures to bound ‖T̃v‖ and hence started instead from an estimate of the form
‖(P − Pn)T̃v‖ ≤ ‖(P − Pn)S2 Rsupp T̃v‖‖S−2T̃v‖.

For the evaluation of PnT̃v, we additionally use a scheme analogous to the one described in ([3], Sect. 7.2)
to add terms incrementally with additional tensor truncations, but preserving the total accuracy tolerance. To
this end, we adjust the approximate operator evaluation such that PnT̃ =: wη/2 satisfies ‖PTv−wη/2‖ ≤ η/2,
and then determine an approximation w̃η/2 with ‖wη/2 − w̃η/2‖ ≤ η/2, which is subsequently used as the
output of apply(v; η). With Pn =

∑m̂(n)
�=1 Θ� and t̃ := T̃v, we first evaluate τ� := ‖Θ�t̃‖ for each �, build the

ascendingly sorted sequence τ̂q := τ�(q), and find q0 such that
∑q0

q=1 τ̂q ≤ η/4. The remaining contributions
Θ�(q)t̃ for q = q0 + 1, . . . , m̂(n) are then summed in increasing order, with an application of recompress(·; ζq)
after adding each summand, with

∑m̂(n)
q=q0+1 ζq ≤ η/4. At this point, we deviate slightly from the treatment in [3],

and choose ζq using a posteriori information: as a by-product of recompress(·; ζq), we obtain an estimate ζ̃q
of the actual truncation error, where usually ζ̃q < ζq. To make use of this, we set η̃q0+1 := η/4, and for each
q ≥ q0 + 1 take ζq := η̃q τ̂q/

∑m̂(n)
p=q τ̂p and η̃q+1 := ηq − ζ̃q. In this manner, truncation tolerances are again

assigned in dependence on the relative sizes of summands.

4.2. Numerical experiments

In our numerical tests, we first treat the same high-dimensional Poisson problem as in [3] to allow a direct
comparison to the algorithm with convergence enforced in H1-norm that we considered there. Subsequently,
we apply the new scheme to a problem with tridiagonal diffusion matrix M . As in [3], we use L2-orthonormal,
continuously differentiable, piecewise polynomial Donovan−Geronimo−Hardin multiwavelets [14] of polynomial
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Figure 1. Norms of computed residual estimates (markers) and corresponding error bounds
(lines), in dependence on the total number of inner iterations (horizontal axis), for d =
×16,+64,�256.
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Figure 2. |rank(wk,j)|∞ (left) and maximum ranks of all intermediates arising in the inner
iteration steps (right), in dependence on current estimate for ‖u− wk,j‖ (horizontal axis), for
d = ×16,+64,�256.

degree 6 and approximation order 7, which satisfy the conditions mentioned in Remark 2.2 and thus form a
Riesz basis of H2(0, 1) ∩ H1

0(0, 1) after rescaling.

4.2.1. High-dimensional poisson problem

Figures 1, 2, and 3 show the results for the Poisson problem on (0, 1)d with homogeneous Dirichlet boundary
conditions and right hand side f = 1. In comparison to the results obtained in [3], we generally observe a similar
behavior, with the expected residual reduction and with ranks increasing gradually as the accuracy increases.
One also observes periodic deteriorations of the error bounds due to the recompression and coarsening step
in line 13 of Algorithm 1 which, however, guarantees overall a near-optimal balance of ranks and mode frame
sparsity with the current error tolerance. The computational simplifications in the new scheme are apparent
in Figure 3: with similar operation counts and error bounds, we can now go up to d = 256 instead of d = 64.
However, the price to pay is that all error estimates now correspond to the L2-norm, instead of the H1-norm
as in [3]. As illustrated in Figure 4, where we compare L2- and H1-errors to a reference solution computed by a
highly accurate exponential sum approximation [15, 18], we indeed no longer have control over the error in H1

in the present case, but do obtain an upper bound for the L2-error as guaranteed by our theory.
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Figure 3. Operation count in dependence on the error estimate reduction (horizontal axis),
for d = ×16,+64,�256.
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Figure 4. Computed error bound (lines), differences in L2 (◦) and H1 (∗) to reference solution,
in dependence on the total number of inner iterations (horizontal axis), for d = 16.

4.2.2. Dirichlet problem with tridiagonal diffusion matrix

We now consider the case of tridiagonal diffusion matrices

M = (mij)i,j=1,...,d = tridiag(−a, 2,−a)
for a = 1

2 and a = 1. As noted in ([3], Sect. 7.4), there is a significant difference in the behavior of the iteration
and in the expected tensor approximability of the solution for these two values of a, since for 0 ≤ a < 1, the
condition number of S−1TS−1 (which directly affects the lower bound for ρ̃ in the present scheme) remains
bounded independently of d, whereas it grows proportionally to d2 for a = 1. Figure 5 shows how this fact
already manifests itself in a pronounced difference in the respective solution ranks observed for d = 4. The
d-dependent condition number for a = 1 also leads to a substantial deterioration in the convergence of the
iteration as d increases. For a = 1

2 , however, we are still able to treat large values of d, as shown in Figures 6
and 7.
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Figure 6. Tridiagonal diffusion matrix, a = 1
2 : |rank(wk,j)|∞ (left) and maximum ranks of all

intermediates arising in the inner iteration steps (right), in dependence on current estimate for
‖u− wk,j‖ (horizontal axis), for d = ×4,+16,�64.

In summary, we conclude that if convergence to the exact solution is required only in L2, the seeming drawback
of losing symmetry in the preconditioned system is more than compensated by the practical simplifications and
by the gain in computational efficiency.

4.3. Comparison with a method for discretized problems

We conclude our numerical tests by a comparison to an established, conceptually different approach. For this
comparison, we return to the Poisson problem −Δu = 1 with homogeneous Dirichlet boundary conditions on
(0, 1)d as in Section 4.2.1, where we again consider d = 16, 64, 256. As before, we denote by u the exact solution
of this partial differential equation.

Rather than adaptively adjusting the ranks in tandem with basis refinement as in Algorithm 1, all exist-
ing alternative methods that we are aware of operate on fixed discretizations of the continuous problem and,
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estimate reduction (horizontal axis), for d = ×4,+16,�64.

in contrast to our method, do not offer any mechanism for estimating the error with respect to u. These
methods typically use finite difference discretizations on uniform grids, as for instance in [5, 13, 15, 24, 26];
in the case of the Poisson equation, for step size h in each coordinate, one arrives at a discrete problem of
the form Mhxh = fh, where fh = 1 (denoting by 1 the vector with all entries equal to one) and where
Mh = M(1)

h ⊗ I ⊗ . . . ⊗ I + . . . + I ⊗ . . . ⊗ I ⊗ M(1)
h , with M(1)

h = h−2 tridiag(−1, 2,−1) and I denoting the
identity matrix of the same format.

Besides a comparison with conceptually more straightforward discretization schemes, our particular objective
here is to establish a comparison with methods that make use of the particular structure of the underlying tensor
representations. Prototypical examples are the alternating linear scheme (ALS), where single components in the
tensor representation are optimized in an alternating fashion, and the related density matrix renormalization
group (DMRG) algorithm. For an overview of such methods and further references, we refer to ([17], Sect. 3.2).

Specifically, we compare our method here with the alternating minimal energy (AMEn) method proposed
recently by Dolgov and Savostyanov in [13], which is related to the ALS and DMRG methods. However, unlike
the basic ALS scheme it includes a mechanism for automatically choosing appropriate ranks, and it was observed
to perform better in the tests in [13] than the DMRG method. The AMEn scheme operates on tensor train (TT)
representations [27, 28] that are closely related to the hierarchical Tucker representations used in our method.

4.3.1. A priori error estimates

A direct comparison of methods makes sense only when the respective results are of comparable quality.
In the present setting, the results thus need to meet comparable accuracy criteria with respect to the exact
solution u of the PDE. Unfortunately, assessing the output quality of any of the existing methods based on fixed
discretizations of the continuous problem in terms of accuracy with respect to u is severely hampered by the
lack of rigorous a posteriori error estimates. Hence, one needs to resort to a priori estimates in order to obtain
at least an indication of the discretization error that can be expected in dependence on h. In addition, one
incurs an interpolation error by representing functions by grid values. Finally, these errors need to be balanced
with the solver error in the approximate solution of the discretized system. Note that in Algorithm 1, there is
no need to treat an interpolation error separately due to the use of an orthonormal basis, and the discretization
and solver errors are balanced automatically and combined in the computed bounds on the total L2-error with
respect to u.
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Returning to the above finite difference approximation, let x denote the array comprised of the grid values
of the exact solution u. Then by Taylor expansion, one has the standard consistency error estimate

‖Mhx − fh‖∞ �
d∑

i=1

‖∂4
xi
u‖∞h2 ≤ dmax

i
‖∂4

xi
u‖L∞(Ω)h

2.

To obtain an actual approximation in L2(Ω), the grid values xh need to be extended to a function uh. Here, in
order to preserve the order of the above estimate, it is natural to employ piecewise d-linear interpolation. For
a given w ∈ H2(Ω) ∩ C(Ω̄), denoting this interpolant by Ihw, by ([8], Thm. 4.6.14) one has

‖w − Ihw‖L2(Ω) ≤ Cdh
2

(
d∑

i=1

∥∥∂2
xi
w
∥∥2

L2(Ω)

) 1
2

. (4.1)

Although the dependence of Cd on d is not specified, considering simple examples of the form w(x) =
∑d

i=1 f(xi)
for suitable f ∈ C2([0, 1]), one finds that in general Cd �

√
d.

Estimate (4.1) can be applied to ‖u− Ihu‖L2(Ω). Furthermore, since ‖M−1
h ‖2 � d−1, one has

‖Ihu− uh‖L2(Ω) � hd/2‖x− xh‖2 ≤ ‖M−1
h ‖2h

d/2‖Mhx − fh‖2 � d−1‖Mhx − fh‖∞.
Consequently, we obtain

‖u− uh‖L2(Ω) � max
i

‖∂4
xi
u‖L∞(Ω)h

2 + Cd

(
d∑

i=1

∥∥∂2
xi
w
∥∥2

L2(Ω)

) 1
2

h2.

Since the constants in these estimates are not known, we do not obtain rigorous quantitative upper bounds on
‖u− uh‖L2(Ω), but rather an indication of its approximate order of magnitude, assuming in particular that the
involved quantities do not grow too strongly with d. Regarding the discretization error ‖Ihu − uh‖L2(Ω), the
latter assumption is in fact supported for the particular PDE under consideration by some numerical evidence,
since in this specific case hd/2‖x − xh‖2 can be estimated by comparison to a reference solution obtained by
exponential sum approximation, similarly as for Figure 4. In this way one observes a scaling of order O(h2) for
this error component, with hardly any variation of the prefactor as d increases. This means in particular that
this scaling is also what one can expect at best, that is, the behaviour of the error does not improve with larger
d either.

For the interpolation error, the situation is less clear. If we assume that
∑d

i=1

∥∥∂2
xi
u
∥∥2

L2(Ω)
remains bounded

independently of d, the considerations concerning estimate (4.1) suggest an interpolation error estimate of order
O(

√
dh2).

These error estimates now need to be balanced with the solver error, which can in turn be bounded in terms
of the discrete residual ‖Mhx̃h − fh‖2. Denoting again by uh the d-linear interpolant of the grid values xh of
the discrete solution, and by ũh the interpolant for arbitrary given grid values x̃h, one has

‖uh − ũh‖L2(Ω) � hd/2‖xh − x̃h‖2 ≤ ‖fh‖−1
2 ‖xh − x̃h‖2.

Since ‖xh − x̃h‖2 ≤ ‖M−1
h ‖2‖Mhx̃h − fh‖2 with ‖M−1

h ‖2 � d−1, one obtains

‖uh − ũh‖L2(Ω) � d−1 ‖Mhx̃h − fh‖2

‖fh‖2
·

For the present model problem, the discretized problems thus should be solved up to a discrete residual of at
most d times the expected size of the further error contributions. This has been used as a stopping criterion for
all following tests with such finite difference discretizations.
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Figure 8. Error bound in dependence on wall clock time for Algorithm 1 as in Table 1,
d = ×16,+64,�256.

It needs to be stressed again that generally, a priori estimates as above for large d do not by themselves give
any reliable indication on the actual errors, since the involved constants depend both on d and on the unknown
solution. To arrive at suitable concrete residual tolerances that balance the involved errors, we will thus need
to make some assumption on the actual scaling of discretization and interpolation errors with respect to both h
and d. Moreover, to see how the performance depends on given accuracy goals, based on the preceding discussion
we consider both an “optimistic” and a “pessimistic” assumption in our tests. In contrast, the explicit error
bounds computed by Algorithm 1 require only information on the data of the problem, that is, on A and f .

4.3.2. Results of the comparison

We now choose the parameters in Algorithm 1 differently from the previous tests: we take κP = 1, κC = 1,
α = 1, β1 = β2 = 1

10 , and θ = 1
5 . We emphasize that the algorithm then still gives explicit error bounds, but the

values for κP and κC are smaller than required for our theoretical rank and complexity bounds in Theorem 3.9.
The latter being worst-case bounds, however, these smaller values still lead to an observed better practical
performance of the algorithm.

Since the compared methods are quite different in nature, we concentrate on the scaling of overall wall clock
times in dependence on d and on the target accuracy. The evolution of the guaranteed L2-error bound produced
by Algorithm 1 (implemented in C++) is shown in Figure 8. This and all further computations were run on a
single core of a workstation with Intel Core i5-3470S CPU at 2.9 GHz and 8 GB RAM.

For the AMEn method, we use the implementation amen solve2 (MATLAB with C and Fortran extensions)
by Dolgov and Savostyanov as described in [13] from the TT Toolbox3 by I. Oseledets et al., with an additional
check of the total relative residual ‖Mh · −fh‖2/‖fh‖2 before stopping the iteration. This check is performed
only when a simpler criterion on certain approximately projected residuals obtained as by-products, which
is originally used by this solver, is met. This criterion on projected residuals, however, turns out not to be
sufficient for guaranteeing a desired bound on the total residual. For the input parameters of the algorithm, we
use the given default values for AMEn(ALS). We have not found any prescription for adjusting these parameters
for different grid sizes and values of d. Note that the AMEn solver has no mechanism for reutilizing results
from coarser discretizations, although this may in principle be realizable. For each grid size, the computation
is therefore restarted from initial values. Since random starting values are used by default, the obtained results
are not exactly reproducible.

3available at https://github.com/oseledets/TT-Toolbox, used in the version of Jan 30, 2015.
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Table 1. Run times (seconds) for arriving at given guaranteed error bounds ε with Algorithm 1.

ε d = 16 d = 64 d = 256

9.5e−7 140.0 603.6 1 790.9
2.4e−7 284.6 1 332.6 2 554.6
6.0e−8 575.1 2 799.0 5 921.5
1.5e−8 1 073.7 5 533.3 12 358.6

A direct application of AMEn without preconditioning gives good results for coarse discretizations as reported
in [13], but leads to very slow convergence for finer discretizations. These issues with ill-conditioned problems are
also well-known for the related ALS and DMRG methods. Note that one cannot rely directly on preconditioners
for the original full discrete problem in order to precondition the arising projected systems. This point is
considered in [26] for eigenvalue problems, but we are not aware of any publication where this is integrated into
a complete method for linear systems. Regardless of this preconditioning issue, for higher accuracy requirements
such a direct approach based low-order finite differences becomes expensive in comparison with our high-order
wavelet discretization, simply as a consequence of the number of entailed degrees of freedom in each tensor
mode.

Both problems can be alleviated to some degree by a QTT representation [23] where, assuming a tensor prod-
uct discretization with 2L grid points in each coordinate, the corresponding tensors of order d are reinterpreted
as tensors of order dL with mode sizes 2 and, in this form, decomposed in a tensor train representation. This
approach is also used for certain examples in [13]. Provided that the ranks in the resulting representation remain
small, one can obtain a significant further compression. The ill-conditioning of Mh also appears to present less
of a problem in this case, at least as long as the ranks do not become too large.

Therefore, we use the AMEn solver combined with a QTT representation of the problem for our comparison.
The underlying discretization uses standard finite differences with step size h as described above, where h =
(2L + 1)−1 for some L ∈ �; recall that in this case, tensor entries represent point values of the approximated
functions.

Note that in the subsequent experiments, the absolute wall clock times need to be interpreted with caution,
in particular since the test code of Algorithm 1 has not been optimized for execution speed. We can, however,
make some observations concerning the scaling of the total complexities both with respect to the target errors
and with respect to d.

The results for Algorithm 1 are given in Table 1, and the results for AMEn/QTT are summarized in Tables 2
and 3. As mentioned earlier, using AMEn directly without the QTT representation and without a preconditioner
would be substantially less efficient. For instance, for d = 16 and L = 10, a direct solution in the dth order TT
representation of the tensor already takes 5138.0 s to converge to the same accuracy as in Table 3, with a very
rapid increase of run times for larger L.

Since in the case of the AMEn scheme, we do not know the precise constants in the error estimates and their
dependence on d, we now need to make an ad hoc assumption on the involved errors to arrive at suitable residual
tolerances for the solver. On the one hand, we can make the optimistic assumption of an O(h2) behaviour for
the sum of discretization and interpolation error, without further d-dependence. By our previous considerations,
this represents the best scaling with respect to d that one could expect here. Although one cannot rule out that
the error actually shows this behavior, it cannot be inferred from the a priori estimates either. This choice leads
us to using dh2 as the residual bound, with the results given in Table 2. On the other hand, the theoretically
supported bounds derived in our above discussion suggest that it is reasonable to rather expect an error estimate
of order O(

√
d h2). Balancing the error components then requires solving up to a discrete residual of d

√
d h2.

The results for this case are displayed in Table 3.
Especially under the first assumption, in the case of the AMEn solver, the computational costs are influenced

by the spatial dimension d only rather weakly. This is a consequence of the special structure of the problem,
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Table 2. Run times for AMEn/QTT at discretization levels L, assuming an error estimate
O(h2) (solving up to a discrete residual dh2).

L h2 d = 16 d = 64 d = 256

10 9.5e−7 31.6 88.6 83.4
11 2.4e−7 95.9 226.7 268.5
12 6.0e−8 789.9 814.5 798.4
13 1.5e−8 6 315.0 4 304.8 2 380.3

Table 3. Run times for AMEn/QTT at discretization levels L, assuming an error estimate
O(

√
d h2) (solving up to a discrete residual d

√
d h2).

d = 16 d = 64 d = 256

L
√

dh2 L
√

dh2 L
√

d h2

10 9.5e−7 71.4
11 1.9e−6 134.2

12 9.5e−7 321.9
11 2.4e−7 540.2

12 4.8e−7 463.1
13 2.4e−7 852.5

12 6.0e−8 3 783.5
13 1.2e−7 2 778.5

14 6.0e−8 4 037.0
13 1.5e−8 27 746.3

14 3.0e−8 21 599.2
15 1.5e−8 — ∗

15 7.5e−9 154 539.1
∗Out of memory in global residual evaluation.

because ‖u‖L2 � d−1 and the required residual bounds are weakened when d increases. The scheme is clearly
able to effectively exploit these properties.

Let us now turn to the scaling with respect to the expected error in the case of AMEn. Passing from L to
L+ 1 amounts to replacing h by h/2, which we can expect to reduce the total error by a factor 4. The observed
corresponding increases in the wall clock times between L and L+1 are fairly irregular, with the largest relative
changes occurring at larger values of L. The costs can also be seen to depend quite strongly on the assumptions
made on discretization and interpolation errors, which underscores the need for a careful balancing of different
error contributions. The results also hint at ill-conditioning issues becoming more problematic, even for the
QTT representation, when L and the required approximation ranks are large.

In the case of Algorithm 1, the results with guaranteed error bounds ε are given in Table 1. We observe a
scaling of the costs with respect to d that is at first slightly superlinear and subsequently sublinear for larger d.
Our method can thus profit from the particular features of the problem for large d as well, albeit not quite as
strongly as the AMEn scheme.

Regarding the desired target accuracy, Algorithm 1 shows a scaling that is very regular and substantially
better than in the case of the AMEn solver. For instance, for d = 16, the repeated decrease of the error tolerance
by these factors of 4 leads to an increase of the computational time by factors 2.03, 2.02, 1.87; one finds a similar
behaviour for larger d. The convergence thus accelerates slightly as the error decreases. This is to be expected
in view of the bound (3.29): asymptotically, the factor corresponding to the total number of activated basis
elements in the tensor modes, which in the present example is expected to grow as ε−

1
7 , will dominate the

further logarithmic terms in this complexity estimate. Indeed, as shown in Figure 9, we obtain this expected
asymptotic behavior for the basis size, which becomes evident for ε < 10−5. The largest ranks of tensors arising
in the computation can be seen to grow like a multiple of |log ε|2. Clearly, the overhead caused by adaptivity is
more visible for smaller problem sizes.

A further difference of practical importance between the two methods is that the use of point values in the
finite difference discretization can lead to overflows in high dimensions. In the present example this can be
observed for fh = 1, for which ‖fh‖2 becomes larger than the greatest representable value in the tests with
d = 256. This issue can be circumvented by a careful rescaling of tensor components. Note, however, that as
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Figure 9. Error bound in dependence of maximum hierarchical ranks and basis sizes for
Algorithm 1 as in Figure 8, d = 16. Here × represent quantities for the solutions wk,j and ◦ the
largest respective quantities arising in intermediate residual evaluation steps. Left: maximum
hierarchical ranks, where the dashed line is exp(−2

√·); right: total number of active basis
elements, corresponding to the sum of mode sizes of the tensors.

long as the L2-norms of the represented functions do not become very large with increasing d, this problem
cannot arise when using orthonormal bases as in Algorithm 1.

In summary, for lower accuracy requirements and correspondingly smaller discretized problems, the costs for
both methods remain comparable, although the overhead for adaptivity and error estimation carries a certain
weight in this regime. In particular, for more demanding accuracy requirements, however, our method eventually
becomes clearly superior.
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