6,361 research outputs found

    State of Harmonization of 24 Serum Albumin Measurement Procedures and Implications for Medical Decisions

    Get PDF
    BACKGROUND: Measurements of serum and plasma albumin are widely used in medicine, including as indicators of quality of patient care in renal dialysis centers. METHODS: Pools were prepared from residual patient serum (n = 50) and heparin plasma (n = 48) from patients without renal disease, and serum from patients with kidney failure before hemodialysis (n = 53). Albumin was measured in all samples and in ERM-DA470k/IFCC reference material (RM) by 3 immunochemical, 9 bromcresol green (BCG), and 12 bromcresol purple (BCP) methods. RESULTS: Two of 3 immunochemical procedures, 5 of 9 BCG, and 10 of 12 BCP methods recovered the RM value within its uncertainty. One immunochemical and 3 BCG methods were biased vs the RM value. Random error components were small for all measurement procedures. The Tina-quant immunochemical method was chosen as the reference measurement procedure based on recovery and results of error analyses. Mean biases for BCG vs Tina-quant were 1.5% to 13.9% and were larger at lower albumin concentrations. BCP methods\u27 mean biases were -5.4% to 1.2% irrespective of albumin concentration. Biases for plasma samples were generally higher than for serum samples for all method types. For most measurement procedures, biases were lower for serum from patients on hemodialysis vs patients without kidney disease. CONCLUSIONS: Significant differences among immunochemical, BCG, and BCP methods compromise interpretation of serum. albumin results. Guidelines and calculations for clinical management of kidney and other diseases must consider the method used for albumin measurement until harmonization can be achieved

    Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates

    Full text link
    Conformational phases of a semiflexible off-lattice homopolymer model near an attractive substrate are investigated by means of multicanonical computer simulations. In our polymer-substrate model, nonbonded pairs of monomers as well as monomers and the substrate interact via attractive van der Waals forces. To characterize conformational phases of this hybrid system, we analyze thermal fluctuations of energetic and structural quantities, as well as adequate docking parameters. Introducing a solvent parameter related to the strength of the surface attraction, we construct and discuss the solubility-temperature phase diagram. Apart from the main phases of adsorbed and desorbed conformations, we identify several other phase transitions such as the freezing transition between energy-dominated crystalline low-temperature structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure

    On the Performance of Copying Large Files Across a Contention-Based Network

    Full text link
    Analytical and simulation models of interconnected local area networks, because of the large scale involved, are often constrained to represent only the most ideal of conditions for tractability sake. Consequently, many of the important causes of network delay are not accounted for. In this study, experimental evidence is presented to show how delay time in local area networks is significantly affected by hardware limitations in the connected workstations, software overhead, and network contention. The mechanism is a controlled experiment with two Vax workstations over an Ethernet. We investigate the network delays for large file transfers, taking into account the Vax workstation disk transfer limitations; generalized file transfer software such as NFS, FTP, and rcp; and the effect of contention on this simple network by the introduction of substantial workload from competing workstations. A comparison is made between the experimental data and a network modeling tool, and the limitations of the tool are explained. Insights from these experiments have increased our understanding of how more complex networks are likely to perform under heavy workloads.http://deepblue.lib.umich.edu/bitstream/2027.42/107873/1/citi-tr-89-3.pd

    NetMod: A Design Tool for Large-Scale Heterogeneous Campus Networks

    Full text link
    The Network Modeling Tool (NetMod) uses simple analytical models to provide the designers of large interconnected local area networks with an in-depth analysis of the potential performance of these systems. This tool can be used in either a university, industrial, or governmental campus networking environment consisting of thousands of computer sites. NetMod is implemented with a combination of the easy-to-use Macintosh software packages HyperCard and Excel. The objectives of NetMod, the analytical models, and the user interface are described in detail along with its application to an actual campus-wide network.http://deepblue.lib.umich.edu/bitstream/2027.42/107971/1/citi-tr-90-1.pd

    Microfluidic blood plasma separation for medical diagnostics:Is it worth it?

    Get PDF
    This review weights the advantages and limits of miniaturised blood plasma separation and highlights interesting advances in direct biomarker capture.</p

    Statistical Mechanics of Aggregation and Crystallization for Semiflexible Polymers

    Full text link
    By means of multicanonical computer simulations, we investigate thermodynamic properties of the aggregation of interacting semiflexible polymers. We analyze a mesoscopic bead-stick model, where nonbonded monomers interact via Lennard-Jones forces. Aggregation turns out to be a process, in which the constituents experience strong structural fluctuations, similar to peptides in coupled folding-binding cluster formation processes. In contrast to a recently studied related proteinlike hydrophobic-polar heteropolymer model, aggregation and crystallization are separate processes for a homopolymer with the same small bending rigidity. Rather stiff semiflexible polymers form a liquid-crystal-like phase, as expected. In analogy to the heteropolymer study, we find that the first-order-like aggregation transition of the complexes is accompanied by strong system-size dependent hierarchical surface effects. In consequence, the polymer aggregation is a phase-separation process with entropy reduction.Comment: 5 pages, 3 figures, 1 tabl

    Phylogenetic analysis of human Chlamydia pneumoniae strains reveals a distinct Australian indigenous clade that predates European exploration of the continent

    Get PDF
    © 2015 Roulis et al. Background: The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results: In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions: Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates

    Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Full text link
    Electronic nematics are exotic states of matter where electronic interactions break a rotational symmetry of the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Intriguingly such phases appear in the copper- and iron-based superconductors, and their role in establishing high-temperature superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of nematic character in the heavy fermion superconductor CeRhIn5. We observe a field-induced breaking of the electronic tetragonal symmetry of in the vicinity of an antiferromagnetic (AFM) quantum phase transition at Hc~50T. This phase appears in out-of-plane fields of H*~28T and is characterized by substantial in-plane resistivity anisotropy. The anisotropy can be aligned by a small in-plane field component, with no apparent connection to the underlying crystal structure. Furthermore no anomalies are observed in the magnetic torque, suggesting the absence of metamagnetic transitions in this field range. These observations are indicative of an electronic nematic character of the high field state in CeRhIn5. The appearance of nematic behavior in a phenotypical heavy fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be a commonality in such materials
    corecore