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Phylogenetic analysis of human Chlamydia
pneumoniae strains reveals a distinct
Australian indigenous clade that predates
European exploration of the continent
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Abstract

Background: The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which
has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of
human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key
polymorphisms and additional coding capacity when human and animal strains are compared.

Results: In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from
patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study
demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains,
with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to
Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to
animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these
distinct strains.

Conclusions: Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains,
and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.

Keywords: Chlamydia pneumoniae, Whole genome sequencing, Phylogenomics, Polymorphisms, Inclusion proteins,
Polymorphic membrane protein, Inosine-monophosphate dehydrogenase, Recombination, Infection

Background
Chlamydia pneumoniae is an obligate intracellular
bacterium and member of the Chlamydiaceae, a family
of pathogens of higher eukaryotes with a distinct
biphasic development cycle [1]. Whilst C. pneumoniae
is primarily recognised as an aetiological agent of
community acquired pneumonia and other respiratory
diseases in humans [2], it has a broad host range
encompassing both warm [3–5] and cold blooded
animals [6, 7]. Members of the Chlamydiaceae are

characterised by their compact genomes and highly
conserved gene content [8]. C. pneumoniae has the great-
est coding capacity of the Chlamydiaceae, with animal
strains of C. pneumoniae having between 20Kbp (animal
versus human C. pneumoniae) to almost 200Kbp (animal
C. pneumoniae versus C. trachomatis serovar D) [9, 10] of
extra nucleotide sequence. The additional coding capacity
of C. pneumoniae is predominantly accounted for by the
expansion of the polymorphic membrane protein (pmp)
and inclusion membrane protein (inc) gene families
[10–12], both of which are involved in the formation
and maintenance of the chlamydial inclusion body,
modulation of the host cell response [12, 13], as well as
a large number of species-specific metabolic and hypo-
thetical protein genes [9, 10, 14].
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In addition to its description as a cause of human
respiratory disease, C. pneumoniae has been implicated in
a variety of human pathologies, including cardiovascular
disease, Alzheimer’s disease, ischaemic stroke, asthma and
lung cancer [15–18]. Until recently, the majority of fully se-
quenced C. pneumoniae whole genomes were from strains
that were isolated from respiratory pathologies [10, 19, 20],
and demonstrated highly conserved nucleotide sequence
content and gene order. Recently, several genomes from
respiratory and cardiovascular strains were reported, as
were whole genome sequences from atherosclerotic and
Alzheimer’s C. pneumoniae strains, which allowed for
comparison of strains isolated from different diseases, and
demonstrated that only minor genetic differences were
found between these strains [9, 21, 22].
A previous study examining the genetic diversity be-

tween human and animal C. pneumoniae suggested that a
genetically distinct strain of human C. pneumoniae was
present and circulating within Australian indigenous com-
munities [23]. PCR analysis of a small number of selected
target genes was performed on two respiratory strains
isolated from Indigenous Australian patients in geograph-
ically separate regions [24, 25] and these were shown to
have nucleotide sequence, that in some instances, placed
these strains phylogenetically closer to animal strains of C.
pneumoniae than those circulating in human populations
in Australia and worldwide [23].
To further explore the genetic diversity of Australian

human C. pneumoniae strains, we genome sequenced and
performed comparative genomic and phylogenetic ana-
lyses of two human Australian indigenous C. pneumoniae
strains and a third strain from an Australian Caucasian pa-
tient. In doing so, we (i) demonstrate that the indigenous
Australian human strains form a separate clade branching
earlier than other human C. pneumoniae strains; (ii) iden-
tify genetic markers unique to Australian indigenous and
non-indigenous strains; and (iii) reveal evidence of limited
recombination within C. pneumoniae strains from the
greater human C. pneumoniae clade.

Results
Phylogenetic relationships in human C. pneumoniae
reveal a distinct Australian indigenous clade predating
European exploration of the continent
C. pneumoniae strains SH511, 1979 [24, 25] and
WA97001 [26] were sequenced following capture of C.
pneumoniae DNA using a set of species-specific SureSe-
lectXT RNA probes [27–29]. Sequencing reads of C. pneu-
moniae WA97001, SH511 and 1797 were mapped to the
reference genome, C. pneumoniae AR39, to check the effi-
cacy of the SureSelectXT DNA captures. The genome of
SH511 had the highest mean read depth of 1944×, followed
by 1979, which had an average read depth of 1887×. The
SH511 and 1979 assembled into 10 contigs and 31 contigs,

respectively. In contrast, C. pneumoniae WA97001 genome
had a significantly lower read depth of 15× and assembled
into 104 contigs.
In order to determine the evolutionary and phylogenetic

relationships between the Australian C. pneumoniae strains
and those previously published, Bayesian and coalescent
estimation methods were used to construct phylogenetic
trees based on whole genome alignments of all human C.
pneumoniae strains and the three published animal C.
pneumoniae strains.
Percentage pairwise identities between indigenous and

non-indigenous strains ranged from 98.4 to 98.8 %,
whilst non-indigenous strains were 99.0 % or greater.
Percentage identities of all strains used in the MrBayes
analysis are outlined in Table 1. The resulting phylogen-
etic tree as represented in Fig. 1, demonstrates a clear
demarcation of animal and human clades. The majority
of non-indigenous human strains cluster into two clades:
a large single clade that contains the AR39 and CWL029
subclades, and the smaller TW183 clade [22]. Interest-
ingly, the two Australian indigenous C. pneumoniae
strains, SH511 and 1979, formed their own clade which
branched deepest from the main human C. pneumoniae
grouping, but was also considerably distant to the animal
C. pneumoniae clade. The Australian caucasian strain
WA97001 and IOL207 (a strain isolated from a case of
acute conjunctivitis) [30] formed their own separate
branches in the main human C. pneumoniae clade.
To investigate the evolutionary relationships of these

deep-branching Australian indigenous human strains fur-
ther, we determined the date of the most recent common
ancestor (MRCA) of the indigenous Australian C. pneu-
moniae strains by using BEAST [31] and ClonalFrame
[32] coalescent estimation methods. BEAST analysis of
indigenous and non-indigenous C. pneumoniae strains
reveals an MRCA for indigenous strains at 1028, with a
95 % credibility interval between 996 and 1062 years. The
mean substitution rate was determined to be 4.64 × 10−4

substitutions per site, per year. ClonalFrame analysis of
indigenous and non-indigenous C. pneumoniae strains
reveals a MRCA of 1425 for the indigenous strains, with a
mean substitution rate of 2.36 × 10−5 per site per year.
Though there are minor differences in the predicted
MRCA and substitution rates between the two programs,
which can be accounted for by the difference in their
calculation methods [33], their estimates support similar
evolutionary timelines and dates.

Identification of genetic markers that distinguish
Australian indigenous strains from non-indigenous and
animal C. pneumoniae strains
Using a PCR-based sequencing approach, we previously
identified a series of potential genetic markers that could
be used to distinguish Caucasian C. pneumoniae strains
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Table 1 Percentage nucleotide pairwise identities of all C. pneumoniae strains

CM1 GiD TOR-1 AR39 YK41 J138 CV14 PB2 PB1 CWL011 Wien3 CWL029 U1271 CV15 Wien1

CM1 100 100 100 99.9 99.7 99.7 99.7 99.7 99.8 99.8 99.6 99.8 99.7 99.7

GiD 100 100 100 99.9 99.7 99.7 99.7 99.7 99.8 99.8 99.6 99.8 99.7 99.7

TOR-1 100 100 100 99.9 99.7 99.7 99.7 99.7 99.8 99.8 99.6 99.8 99.7 99.7

AR39 100 100 100 99.9 99.7 99.7 99.7 99.7 99.8 99.8 99.6 99.8 99.7 99.7

YK41 99.9 99.9 99.9 99.9 99.6 99.7 99.7 99.7 99.7 99.7 99.6 99.7 99.7 99.7

J138 99.7 99.7 99.7 99.7 99.6 99.7 99.7 99.7 99.7 99.7 99.6 99.7 99.7 99.7

CV14 99.7 99.7 99.7 99.7 99.7 99.7 100 100 100 100 99.8 100 100 100

PB2 99.7 99.7 99.7 99.7 99.7 99.7 100 100 100 100 99.8 100 100 100

PB1 99.7 99.7 99.7 99.7 99.7 99.7 100 100 100 100 99.8 100 100 100

CWL011 99.8 99.8 99.8 99.8 99.7 99.7 100 100 100 100 99.9 100 100 100

Wein3 99.8 99.8 99.8 99.8 99.7 99.7 100 100 100 100 99.9 100 100 100

CWL029 99.6 99.6 99.6 99.6 99.6 99.6 99.8 99.8 99.8 99.9 99.9 99.9 99.8 99.8

U1271 99.8 99.8 99.8 99.8 99.7 99.7 100 100 100 100 100 99.9 100 100

CV15 99.7 99.7 99.7 99.7 99.7 99.7 100 100 100 100 100 99.8 100 100

Wein1 99.7 99.7 99.7 99.7 99.7 99.7 100 100 100 100 100 99.8 100 100

K7 99.8 99.8 99.8 99.8 99.7 99.7 100 99.9 100 100 100 99.9 100 100 100

Wein2 99.8 99.8 99.8 99.8 99.7 99.7 100 99.9 100 100 100 99.9 100 100 100

MUL2216 99.8 99.8 99.8 99.8 99.7 99.7 100 99.9 100 100 100 99.9 100 100 100

Panola 99.8 99.8 99.8 99.8 99.7 99.7 100 99.9 99.9 100 100 99.9 100 100 100

H12 99.4 99.4 99.4 99.4 99.4 99.4 99.6 99.6 99.6 99.7 99.7 99.5 99.7 99.6 99.6

UZG1 99.6 99.6 99.6 99.6 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.6 99.7 99.7 99.7

TW183 99.6 99.6 99.6 99.6 99.5 99.5 99.7 99.7 99.7 99.7 99.7 99.6 99.7 99.7 99.7

A03 99.5 99.5 99.5 99.5 99.5 99.5 99.6 99.6 99.6 99.6 99.6 99.8 99.6 99.6 99.6

WA97001 99.7 99.7 99.7 99.7 99.7 99.5 99.5 99.5 99.5 99.5 99.5 99.4 99.5 99.5 99.5

1979 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.7 98.9 98.7 98.7 98.7

SH511 98.7 98.7 98.7 98.7 98.6 98.7 98.7 98.7 98.7 98.8 98.8 98.9 98.8 98.7 98.7

IOL207 99.2 99.2 99.2 99.2 99.2 99.2 99.4 99.4 99.4 99.4 99.4 99.3 99.4 99.4 99.4

DC9 97.9 97.9 97.9 97.9 97.9 97.9 98 98 98 98 98 97.9 98 98 98

LPCoLN 94.6 94.6 94.6 94.6 94.6 94.8 94.7 94.7 94.7 94.7 94.7 94.6 94.7 94.7 94.7

B21 94.6 94.6 94.6 94.6 94.6 94.8 94.7 94.7 94.7 94.7 94.7 94.6 94.7 94.7 94.7
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Table 1 Percentage nucleotide pairwise identities of all C. pneumoniae strains (Continued)

K7 Wien2 MUL2216 Panola H12 UZG1 TW183 A03 WA97001 1979 SH511 IOL207 DC9 LPCoLN B21

CM1 99.8 99.8 99.8 99.8 99.4 99.6 99.6 99.5 99.7 98.6 98.7 99.2 97.9 94.6 94.6

GiD 99.8 99.8 99.8 99.8 99.4 99.6 99.6 99.5 99.7 98.6 98.7 99.2 97.9 94.6 94.6

TOR-1 99.8 99.8 99.8 99.8 99.4 99.6 99.6 99.5 99.7 98.6 98.7 99.2 97.9 94.6 94.6

AR39 99.8 99.8 99.8 99.8 99.4 99.6 99.6 99.5 99.7 98.6 98.7 99.2 97.9 94.6 94.6

YK41 99.7 99.7 99.7 99.7 99.4 99.5 99.5 99.5 99.7 98.6 98.6 99.2 97.9 94.6 94.6

J138 99.7 99.7 99.7 99.7 99.4 99.5 99.5 99.5 99.5 98.7 98.7 99.2 97.9 94.8 94.8

CV14 100 100 100 100 99.6 99.7 99.7 99.6 99.5 98.7 98.7 99.4 98 94.7 94.7

PB2 99.9 99.9 99.9 99.9 99.6 99.7 99.7 99.6 99.5 98.7 98.7 99.4 98 94.7 94.7

PB1 100 100 100 99.9 99.6 99.7 99.7 99.6 99.5 98.7 98.7 99.4 98 94.7 94.7

CWL011 100 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

Wein3 100 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

CWL029 99.9 99.9 99.9 99.9 99.5 99.6 99.6 99.8 99.4 98.9 98.9 99.3 97.9 94.6 94.6

U1271 100 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

CV15 100 100 100 100 99.6 99.7 99.7 99.6 99.5 98.7 98.7 99.4 98 94.7 94.7

Wein1 100 100 100 100 99.6 99.7 99.7 99.6 99.5 98.7 98.7 99.4 98 94.7 94.7

K7 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

Wein2 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

MUL2216 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

Panola 100 100 100 99.7 99.7 99.7 99.6 99.5 98.7 98.8 99.4 98 94.7 94.7

H12 99.7 99.7 99.7 99.7 99.4 99.4 99.3 99.2 98.4 98.4 99.1 97.8 94.4 94.4

UZG1 99.7 99.7 99.7 99.7 99.4 100 99.6 99.3 98.8 98.8 99.2 98.2 94.5 94.5

TW183 99.7 99.7 99.7 99.7 99.4 100 99.6 99.3 98.8 98.8 99.2 98.2 94.5 94.5

A03 99.6 99.6 99.6 99.6 99.3 99.6 99.6 99.3 98.9 98.9 99.1 97.9 94.5 94.4

WA97001 99.5 99.5 99.5 99.5 99.2 99.3 99.3 99.3 98.8 98.8 99 97.8 94.5 94.5

1979 98.7 98.7 98.7 98.7 98.4 98.8 98.8 98.9 98.8 99.7 98.4 97.5 94.2 94.2

SH511 98.8 98.8 98.8 98.8 98.4 98.8 98.8 98.9 98.8 99.7 98.4 97.5 94.3 94.3

IOL207 99.4 99.4 99.4 99.4 99.1 99.2 99.2 99.1 99 98.4 98.4 97.6 94.3 94.3

DC9 98 98 98 98 97.8 98.2 98.2 97.9 97.8 97.5 97.5 97.6 93.6 93.6

LPCoLN 94.7 94.7 94.7 94.7 94.4 94.5 94.5 94.5 94.5 94.2 94.3 94.3 93.6 100

B21 94.7 94.7 94.7 94.7 94.4 94.5 94.5 94.4 94.5 94.2 94.3 94.3 93.6 100
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of different origins [23]. In the current study, fine-
detailed genomic comparisons identified a series of novel
genetic markers unique to the Australian indigenous
strains, as well as unexpected sequence diversity in the
DC9, WA97001 and IOL207 strains, which support their
distinct phylogenetic positions in the C. pneumoniae
tree.
One of the most significant regions of genetic variation

identified is located around four full-length IncA genes
annotated in koala strain LPCoLN (CPK_ORF00546 to
CPKORF00549 [9]); the differences of which support our
phylogenetic results. The most notable finding in this
region for the three Australian strains was the observation
that the Australian indigenous strains contain a full-length
homolog of CPK_ORF00549 sharing 99.4 % nucleotide
pairwise identity to the koala homolog (Fig. 2). The
presence of this gene in strains SH511 and 1979, and its
significant sequence identity to the koala/bandicoot
homolog supports the branching of the Australian

indigenous clade earliest in the greater human C. pneumo-
niae phylogeny. Conversely, the Australian indigenous
strains do not have a copy of CPK_ORF00547. This locus
is also absent in the frog (DC9) strain and all strains
within the TW183 clade, but is found in fragmented forms
in all other human strains. Gene copy numbers and frag-
mentation with respect to the koala LPCoLN strain is rep-
resented in Fig. 2.
Another genetic marker unique to the Australian indi-

genous C. pneumoniae strains SH511 and 1979, was the
presence of a 159 bp insertion in the gene homologous
to koala CPK_ORF0341 (585 bp insertion compared to
the AR39 homolog). Translation of the open reading
frame suggests that this is a putative IncA gene which is
full length in the koala strain. However, this gene is
slightly truncated by 84 amino acids in indigenous
strains (354 amino acids in length) and is only 154
amino acids in length in all other strains, including frog
DC9 - due to a single nucleotide insertion 3’ which

Fig. 1 Chlamydia pneumoniae whole genome phylogeny constructed using MrBayes. Posterior probabilities >0.75 shown. Animal and human C.
pneumoniae strains form the two major clades, with four distinct clades within the human C. pneumoniae tree
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results in a frame shift (Fig. 3). Again, the large, strain-
specific insertion and its sequence similarity to the koala
homolog, supports the earliest branching of the Australian
indigenous strains in the major human C. pneumoniae
clade.
Sequence polymorphism has been described in the

guaB/A-add operon in human and animal C. pneumo-
niae strains, with previous studies detailing that human
C. pneumoniae strains encode fragmented inosine-5-

monophosphate dehydrogenase (guaB) genes [9]. In
this study, we found that like the DC9 frog strain, the
Australian indigenous strains and strain IOL207 encode
for a full length, intact guaB gene. By comparison, all other
human strains have a T/C transition at nucleotide position
262, which results in a stop codon (Fig. 4). Varied levels of
sequence decay are evident in the Australian strains for
GMP synthase (guaA) and adenosine deaminase (add). De-
letions in both the guaA and add homologs of WA97001

Fig. 2 The IncA gene expansion and recombination locus spanning homologs of CPK_ORF546 through 549 (LPCoLN locus numbering). Human
and frog C. pneumoniae strains encode for either two or three copies with various levels of fragmentation between strains. Different clades within
human C. pneumoniae encode for identical sequence length across this locus. The Australian indigenous strains are the only known human C.
pneumoniae strains to encode for a CPK_ORF00549 homolog

Fig. 3 A large sequence insertion is specific to indigenous strains SH511 and 1979, within a putative IncA gene homologous to CPK_ORF341. This
insertion encodes an almost full-length IncA homolog similar to that in the koala and bandicoot strains. Sequences at this locus for SH511 and
1979 are identical, and are shown compared to human strain AR39 and koala strain LPCoLN
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result in truncations of these genes with loss of functional
domains, whilst the Australian indigenous strains exhibit
extensive sequence decay at this locus, resulting in the ab-
sence of guaA-add and the downstream hypothetical pro-
tein. Interestingly, whilst the entire guaA/B-add operon is
absent in both koala and bandicoot strains, these genes are
present in the frog strain DC9.
Various sequence polymorphisms are evident in the

Australian C. pneumoniae strains for the pmpE/F4 gene.
Both indigenous Australian strains 1979 and SH511 are
truncated as the result of several deletions, whilst a single

nucleotide insertion in WA97001 results in a frameshift
causing truncation of this gene. This results in the loss of
the C-terminal autotransporter domain for all three strains
- however the mid-gene region encoding for nine FXXN
and eight GGA(I,L,V) amino acid motifs are highly con-
served across all the human C. pneumoniae strains (Fig. 5).
Additionally, whilst both the koala and bandicoot homologs
of this gene display extensive sequence polymorphism, the
DC9 frog homolog is highly similar in sequence to the
non-indigenous human pmpE/F4 and encodes for the full-
length protein.

Fig. 4 A single nucleotide transition in strains SH511, 1979, DC9 and IOL207 results in a full-length guaB gene, compared to fragmented genes in other
human C. pneumoniae represented by AR39. The amino acid residue change at position 88 in strains IOL207, 1979, SH511 and DC9 is highlighted in the
pink box, whilst the black arrow below the AR39 sequence indicates the guaB stop codon which is present in all other human C. pneumoniae strains. The
IOL207 homolog is N-terminal truncated by 23 amino acids

Fig. 5 pmpE/F4 displays significant sequence polymorphism and decay in Australian C. pneumoniae strains SH511, 1979 and WA97001, resulting in
truncated homologs of this protein. The frog DC9 homolog is similar in sequence to human C. pnuemoniae strains, unlike the koala and bandicoot
strains which are highly polymorphic at this locus. The GGA(I,L,V) - FXXN amino acid repeat motifs characteristic to the polymorphic membrane protein
gene family are highlighted, whilst sequence for the C-terminal autotransporter domain is clearly absent in SH511, 1979, WA97001 and LPCoLN strains
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Australian indigenous strains demonstrate characteristic
recombination profiles with only a few instances shared
with non-indigenous strains
In addition to estimation of the MRCA and mean substi-
tution rate, ClonalFrame was used to determine the
recombination profiles and any shared recombination loci
in C. pneumoniae. Our study found that the Australian
indigenous strains SH511 and 1979 had a distinct and
almost identical recombination and nucleotide substitu-
tion profile, with only a single difference in recombination
locus between the two: SH511 between 296,000 and
298,000 bp and 1979 between 310,000 and 316,000 bp.
Additionally, SH511 and 1979 share a strongly sup-
ported recombination event with the atherosclerosis
strain A03 and to a lesser extent with Australian non-
indigenous strain WA97001 between 778,000 and
784,000, which encompasses hypothetical protein and
putative IncA genes. In comparing recombination pro-
files across the non-indigenous C. pneumoniae strains,
the Australian WA97001 strain shares a single strong
recombination event with A03 and TW183 between
823,600 and 827,100 bp, which encompasses putative
IncA genes. Several nucleotide substitution events are
shared amongst the various C. pneumoniae strains,
though the highest number of nucleotide substitutions

occur in strains J138, IOL207 and DC9 (Fig. 6). A Phi
test for recombination was performed on the C. pneu-
moniae whole genome alignment using SplitsTree4
[34], which found a total of 16,329 informative sites
and statistically significant evidence of recombination
(p = 5.538 × 10−4).

Discussion
C. pneumoniae has been described as an ancient patho-
gen, with the broadest host range of any member of the
Chlamydiaceae [35]. Comparative whole genome studies
examining the differences between human respiratory
[20], non-respiratory [9, 21, 22, 36] and animal C. pneu-
moniae strains [9] all demonstrate a highly conserved core
genome with subtle strain-specific differences. We previ-
ously characterized some of these subtle differences using
a PCR/sequencing approach and revealed that the two
human Australian indigenous human strains sequenced in
this study shared genetic markers with the koala LPCoLN
strain [9] for some genes and away from other human
non-Australian indigenous strains [23]. To further explore
the relationship of Australian indigenous and non-
indigenous human strains, in the current study, we
obtained whole genome sequences for three Australian
respiratory strains (SH511, 1979 and WA97001) and

Fig. 6 Whole genome recombination mappings as predicted by ClonalFrame coalescent methods. Red bars represent recombination events and green
ticks represent mutations. Strains SH511 and 1979 share almost identical recombination profiles, with non-indigenous human C. pneumoniae and the
DC9 frog strain sharing recombination events at discrete loci. The predicted whole genome phylogeny based on recombination and mutation events is
consistent with the groupings demonstrated using BEAST and MrBayes prediction methods
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performed comparative analyses to further understand
their relationship to other previously characterized hu-
man and animal C. pneumoniae strains.
Using a variety of phylogenomic tools, our analysis sug-

gests that the Australian C. pneumoniae indigenous
strains form a phylogenetically distinct clade away from all
other human C. pneumoniae strains sequenced to date.
This is substantiated by unique sequence polymorphisms
and recombination profiles associated with the Australian
indigenous strains. In contrast to previous phylogenies
constructed using sequenced PCR fragments, which
alternately placed the Australian indigenous strains within
either the human or animal branches of the tree [23], the
use of whole genome sequences gives a more accurate
description of the position of these strains within the
greater C. pneumoniae evolutionary tree. Fine-detailed
genomic comparisons also revealed several novel genetic
markers in Australian indigenous human C. pneumoniae
strains, beyond those previously identified in previous
PCR-based studies [23].
The Australian indigenous strains demonstrate a copy

number incongruity within the CPK_ORF00546 to
CPK_ORF00549 IncA gene family. This gene family expan-
sion was first described in the koala LPCoLN strain [9]
with human C. pneumoniae strains exhibiting variable
levels of gene fragmentation and gene loss at this locus.
The Australian indigenous strains are unique in that they
specifically encode a homolog to CPK_ORF00549: to date,
SH511 and 1979 are the only human C. pnuemoniae
strains that encode for this homolog. Previous studies have
shown that C. pneumoniae encodes a far larger number of
IncA and putative IncA proteins compared to other Chla-
mydiae [11, 12], many of which are species-specific. Strong
recombination signals were also detected within several
human C. pneumoniae strains at loci encoding IncA pro-
teins, which suggests that recombination may account for
the expanded number of IncA proteins in C. pneumoniae.
One of the more subtle genetic differences observed be-

tween the strains analysed was the maintenance of a partial
purine biosynthesis pathway encoded by guaA/B-add [10].
Previous studies demonstrated that the guaB gene is frag-
mented in human C. pneumoniae strains [14], however in
this study we demonstrate that strains DC9, SH511 and
1979 encode for an intact guaB gene. Given that the
Australian indigenous strains do not encode guaA-add, it
is likely that the sequence for guaB was a recent acquisi-
tion from a strain most similar to DC9. Interestingly, in
contrast to the koala and bandicoot strains where the
entire guaA/B-add operon is absent [9, 37], the frog DC9
strain encodes guaA/B-add genes, with >99.5 % nucleotide
pairwise identity to all human C. pneumoniae strains, with
the exception of the three Australian strains. Studies in
both C. psittaci and Chlamydia caviae have found evi-
dence for horizontal gene transfer of the guaA/B-add

operon between different chlamydial strains and species
[33, 38], lending further support for the recent acquisition
of guaB by the Australian indigenous strains. Whilst it is
unclear what effect the presence or absence of guaA/B-
add has on the growth and virulence of human and animal
C. pneumoniae strains, a previous study examining the
effect of mutations in the Chlamydia muridarum plasticity
zone suggest that 5’ point mutations of guaB and add
result in attenuated virulence in vivo, whilst guaA/B-add
mutations do not affect the growth characteristics of these
strains in vitro [39]. These observations are similar to those
reported for the growth and virulence of Borrelia burgdor-
feri and Francisella tularensis guaA/B +/− strains in vitro
and in vivo [40, 41].
In order to further explore the evolutionary relation-

ships of the Australian indigenous C. pneumoniae strains,
BEAST and ClonalFrame analyses predicted that these
strains had an MRCA of 1028 and 1425, respectively. Both
of these estimations pre-date the known colonization of
the Australian continent by Europeans by several hundred
years, but are virtually identical to the previously esti-
mated MRCA for strains within the non-indigenous clade
at 1151 +/− 20 years [21].
Given this new evidence and our previous data suggest-

ing that C. pneumoniae strains in humans likely originated
from a zoonotic event(s) [9, 23], it is interesting to specu-
late on the origin of these indigenous human C. pneumo-
niae strains. Two possible evolutionary hypotheses to
explain the deep-branching of these strains are proposed:
(A), the Australian indigenous strains have evolved from a
separate zoonotic transmission event, or alternate inter-
mediate strain, to that of the other human C. pneumoniae
strains. These ancestral strains were subsequently endemic
on the Australian continent and continued to evolve in
isolation to the non-indigenous C. pneumoniae strains.
Alternatively (B), all human C. pneumoniae strains dis-
seminated from a common intermediate strain, resultant
from a single zoonotic event several thousand years ago,
and evolved separately in response to their different
ecological niches (Fig. 7). Our findings provide support for
both hypotheses.
With respect to hypothesis (A), estimations from both

BEAST and ClonalFrame analyses indicate an MRCA for
the indigenous strains several hundred years prior to the
first reported visitation of the Australian continent by
Dutch or British explorers [42, 43]. This suggests the
possibility that an endemic strain similar to our strains
may have been circulating within the indigenous popula-
tion prior to the arrival of European colonisation. Given
the sequence similarity of the indigenous strains to the
koala and bandicoot C. pneumoniae strains at several
key loci (the absence of guaA-add, polymorphisms in
pmpE/F4 and the IncA gene expansion), as well as those
previously described [23], it is possible that a strain
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similar to these animal strains was zoonotically transmit-
ted to humans on the Australian continent. Hunter-
gatherer communities lived in close proximity and inter-
acted with wild animals throughout human history,
which would facilitate the transmission of a pathogen to
humans. Serological studies examining the prevalence of
chlamydial infection in remote indigenous communities
have reported levels of almost 60 % adult female
seroprevalence to C. pneumoniae [24]. Several species of
native Australian marsupials [9, 23, 37, 44] as well as an
amphibian [7, 23] have been demonstrated to have gen-
etic sequence similar to that of the koala LPCoLN strain.
Studies have shown that koala and bandicoot C. pneu-
moniae strains readily infect various human-derived cell
lines [3, 45, 46], and evidence for human carotid artery
and PBMC strains which are genotypically similar to the
koala strain at the ompA and yge-urk intergenic spacer
loci have been reported [47]. If the distinct phylogenetic

clustering of SH511 and 1979 is a result of a separate
zoonotic event to that of the main human C. pneumo-
niae lineage, then it is likely that the animal strain that
they have evolved from is still unknown, and probably
more similar to the frog DC9 strain in sequence and nu-
cleotide content.
The alternate hypothesis (B), is that all human C. pneu-

moniae strains disseminated from a single zoonotic event
(presumably in Americas or Europe) and then differenti-
ated along separate evolutionary paths, dependent on their
geographical and disease niche. The estimated MRCA for
indigenous and non-indigenous human strains differs by
less than 200 years, whilst their phylogenetic distance is
significantly closer, compared to the animal strains. The
overall nucleotide pairwise identity of the Australian indi-
genous strains is more similar to other human strains of
C. pneumoniae, even when significant similarities to ani-
mal strains at discrete loci are included. There are two

Fig. 7 Evolutionary hypothesis model describing two alternate hypotheses for the characteristic deep-branching of the Australian indigenous strains
SH511 and 1979. In hypothesis A, Australian indigenous strains evolved from a separate zoonotic (or intermediate) transmission event, and continued
to evolve in isolation from non-indigenous human C. pneumoniae strains. In hypothesis B, all human C. pneumoniae strains disseminated from a single
zoonotic (or intermediate) transmission event and evolved separately in response to differing ecological functions
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possible mechanisms to explain the dissemination of these
particular strains: Firstly - various strains of C. pneumo-
niae were circulating in the worldwide human population
approximately 40 thousand years ago, which is well prior
to the colonisation of the Australian continent [48], and
that one or some of these strains came to the continent
with the arrival of the indigenous peoples. This would
account for the characteristic sequence polymorphisms
present in the SH511 and 1979 but not in other human C.
pneumoniae strains. Alternately - the worldwide variation
in human C. pneumoniae is far greater than has yet been
determined, and several strain types were introduced to
the Australian continent with European colonisation. This
in turn accounts for the overall sequence similarity of the
SH511 and 1979 strains to non-indigenous human C.
pneumoniae strains, in particular WA97001, with which it
shares a considerable number of SNPs, as opposed to the
Australian marsupial strains, LPCoLN and B21. In both
cases, genetically distinct subpopulations of C. pneumoniae
could have spread throughout, and evolved in isolation
within the indigenous Australian population. Genotypic
variation amongst concurrent populations of monomorphic
bacteria resulting from selective sweeps is well documented
in both Chlamydia [49, 50] and other bacterial species [51].
The differentiation of the main human C. pneumoniae
lineage from both the indigenous and animal lineages could
be explained by adaptation of these strains to selective and
antigenic pressure as a result of extensive antibiotic treat-
ment regimes [52].
Whilst our study provides evidence for a phylogenetically

and genetically distinct branch of human C. pneumoniae,
these inferences are made on a relatively small sample size,
taken from two individuals from remote communities in
the same state, over two decades ago. It is highly unlikely
that sampling from the same remote communities and
wider ranging communities will uncover the same strains
as documented in this study; given the increased inter-
action between members of remote indigenous communi-
ties and neighbouring townships, as well as expanded
antibiotic treatment regimes for a range of bacterial infec-
tions, including Chlamydia, within these communities. It is
also possible that greater sampling for C. pneumoniae in
countries outside Australia would uncover a wider range of
strains, some of which may be similar to those described in
this study.

Conclusion
In summary, we used a combination of comparative
genomic and phylogenetic methods to determine the evolu-
tionary position of three Australian human C. pneumoniae
strains within the greater C. pneumoniae tree. Our study
demonstrated a phylogenetically distinct human C. pneu-
moniae clade consisting of two Australian indigenous
strains, that branched earlier in the human C. pneumoniae

evolutionary tree with an estimated MRCA predating the
exploration and colonisation of the continent by European
settlers by several hundred years. Our findings indicate that
a unique strain of C. pneumoniae evolved in isolation
within the Australian indigenous population, as evidenced
by the unique recombination profiles and distinct sequence
polymorphisms in these strains. This suggests that a far
greater level of sequence diversity is present amongst hu-
man and animal C. pneumoniae strains than previously sur-
mised, and that further sampling of C. pneumoniae isolates
from wider geographical regions may uncover strains which
have evolved similarly to this unique C. pneumoniae clade.

Methods
Description of Chlamydia pneumoniae strains, cell
culturing and DNA purification
Three Australian C. pneumoniae cultured isolates
(WA97001, SH511 and 1979) were used for comparative
analyses in this study. The non-indigenous isolate
WA97001 is a clinical nasopharyngeal isolate fromWestern
Australia [26] whilst isolates SH511 and 1979 are indigen-
ous Australian isolates from two separate patients in
remote Northern Territory communities [24, 25].
Isolate WA97001 was propagated on McCoy cells in T75

flasks for five passages, based on a previously described
method [46]. Infected cells were pooled and semi-purified
using a sonication and centrifugation method prior to pas-
sage. The final semi-purified product was stored in an
equal volume of SPG media [53]. 500 μl of this semi-
purified material was used for DNA extraction. Isolates
SH511 and 1979 were extracted from non-viable archival
culture material [23]; 500 μl of each isolate was used for
DNA extraction.
DNA extraction was performed using phenol:chlorofor-

m:IAA, based on a well described method [54], with the
addition of 2 μl of glycogen prior to ethanol precipitation
at −20 °C overnight. Precipitated DNA was dissolved in
50 μl of TE buffer. 500 ng of extracted DNA was used to
perform pan-Chlamydiales 16S rRNA [55] and C. pneu-
moniae specific RpoB [56] PCR to confirm the presence of
C. pneumoniae DNA, and 500 ng of stock DNA was elec-
trophoresed on a 0.8 % TBE agarose gel to confirm high
molecular weight DNA. Each DNA extraction yielded
greater than 2 μg of high molecular weight genomic DNA,
which was used for sequence capture and Illumina HiSeq
2500 whole genome sequencing at the Institute for
Genome Sciences, Baltimore, Maryland.

Sequence capture, whole genome sequencing and
assembly
Sequence capture was performed on total DNA extracted
from WA97001, SH511 and 1979 with Agilent SureSe-
lectXT DNA capture probes designed to C. pneumoniae
reference strain AR39, using a hybridisation capture and
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amplification process [27–29]. Captured and amplified
products were sequenced using the Illumina HiSeq 2500
platform, resulting in paired-end 100 base pair reads. Read
quality was checked with FastQC (http://www.bioinforma-
tics.bbsrc.ac.uk/projects/fastqc/) and genomes were assem-
bled de novo using SPAdes 3.0.0 with SPAdes 3.0.0 with k-
mer values set to of 15, 21, 33, 51 and 71 [57]. All assem-
bled contigs were aligned to the reference C. pneumoniae
AR39 genome using BLASTn to remove non-chlamydial
contigs. Concatenated genome contigs were annotated
using the RAST pipeline [58] and manually curated using
ARTEMIS [59]. Total read depth of WA97001, SH511 and
1979 was calculated by mapping the raw reads to complete
genome of C. pneumoniae AR39 using the BWA-backtrack
algorithm with BWA aligner [60]. Raw reads were also
mapped to the complete genome of C. pneumoniae
LPCoLN for comparison. The BWA parameters used
include the number of differences allowed between the
reference and query set at 0.04 and the number of differ-
ences allowed in the seed was 2. The maximum number of
gaps allowed in the alignment was 1 and the gap penalty
was set at 11.

Phylogenetic and recombination analyses
De novo assemblies and readmapped assembled consen-
sus sequences for WA97001, SH511 and 1979 were
aligned to the existing human C. pneumoniae whole
genome sequences [10, 19–22, 61] and animal C. pneu-
moniae strains LPCoLN, B21 and DC9 [9, 22, 37] in
Geneious 6.1.8 [62] using the MAFFT plugin implemen-
tation [63]. Coverage analyses for readmapped assem-
blies and manual curation of annotated genomes was
performed using ARTEMIS [59].
Phylogenetic analyses were performed on whole genome

alignments, with the LPCoLN koala [9] C. pneumoniae
strain indicated as an outlier. Whole genome alignments
were also filtered for poorly aligned and gap regions using
Gblocks 0.91b [64]. Mid-point rooted trees were
constructed with the MrBayes plugin [65] in Geneious,
utilising a Jukes-Cantor substitution model with with four
Markov Chain Monte Carlo (MCMC) chains and 1.1
million cycles, sampled every 1000 generations and the first
10,000 trees discarded as burn-in. Estimates of strain
evolution over time were performed on whole genome
alignments using the BEAST package [31]. Indigenous,
non-indigenous and animal isolates were defined in separ-
ate taxon sets and a GTR nucleotide substitution model
was employed. MRCA priors were set at a normal distribu-
tion with a mean of 95.2 +/− 7.4 [66]. MCMC chain length
was set to 5 × 107 to ensure effective sample sizes were
sufficient for strong posterior distribution statistics. Clonal-
Frame [67] was used to determine homologous recombin-
ation within C. pneumoniae genomes, and progressive
MAUVE [68] was used to generate the input alignments.

Three successive runs of ClonalFrame were performed on
the whole genome alignment, each with 20,000 iterations
and 10,000 of these discarded as burn-in. The three runs
were checked for convergence and their trees combined
for analysis. An additional Phi test for recombination was
performed in SplitsTree4 [34] using the whole genome
alignment generated by MAFFT in Geneious.
The accession numbers for the C. pneumoniae whole

genome sequences used in the comparative analyses and
phylogenies are outlined in Table 2.

Description of polymorphic hotspots in C. pneumoniae
whole genome alignments
De novo and readmapping assemblies were used to con-
struct whole genome alignments with previously described

Table 2 C. pneumoniae strain designations and accession
numbers

Strain designation Accession number Reference/s

A03 SRP056807 [15, 21]

AR39 NC_002179.2 [19]

B21 NZ_AZNB01000000 [37]

CM1 ERS640705 [22]

CV14 ERS640706 [22]

CV15 ERS640707 [22]

CWL011 ERS640708 [22]

CWL029 NC_000922.1 [10]

DC9 ERS640710 [22]

GiD ERS640711 [22]

H12 ERS640712 [22]

IOL207 - [22]

J138 NC_002491.1 [20]

K7 ERS640713 [22]

LPCoLN NC_017285.1 [9]

MUL2216 ERS640714 [22]

Panola ERS640715 [22]

PB1 ERS640716 [22]

PB2 ERS640717 [22]

SH511 SRP061961 [25] This study

TOR-1 SRP056806 [16, 21]

TW183 NC_005043.1 Unpublished

U1271 ERS640718 [22]

UZG1 ERS640719 [22]

WA97001 SRP062032 [26] This study

Wien1 ERS640720 [22]

Wien2 ERS640721 [22]

Wien3 ERS640722 [22]

YK41 ERS640723 [22]

1979 SRP062031 [25] This study
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human and animal C. pneumoniae whole genomes in
MAFFT [63] in Geneious [62]. Single nucleotide polymor-
phisms (SNPs) and insertions/deletions were detected
using the Variations/SNPs tool in Geneious, and larger
scale differences were detected via manual scanning of the
genome alignment. Sequence for genes which appeared to
have significant deletions or insertions were manually ex-
tracted and sequence run against the BLAST [69] database
to determine closest homologs. Sequences were translated
and searched against the SMART database [70] to predict
any changes in functional domains or protein motifs.

Availabilty of supporting data
The WA97001, SH511 and 1979 whole genome se-
quencing projects can be found on National Center for
Biotechnology Information (NCBI) BioProject under
accession numbers [Bioproject:PRJNA291806, Biopro-
ject:PRJNA291802 and Bioproject:PRJNA291805] with
reads deposited in the Short Reads Archive under ac-
cession numbers [SRA:SRR2144962, SRA:SRR2144961
and SRA:SRR2144960] respectively.
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