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State of Harmonization of 24 Serum Albumin
Measurement Procedures and Implications for

Medical Decisions
Lorin M. Bachmann,1* Min Yu,2 James C. Boyd,2 David E. Bruns,2 and W. Greg Miller1

BACKGROUND: Measurements of serum and plasma albu-
min are widely used in medicine, including as indicators
of quality of patient care in renal dialysis centers.

METHODS: Pools were prepared from residual patient se-
rum (n � 50) and heparin plasma (n � 48) from patients
without renal disease, and serum from patients with kid-
ney failure before hemodialysis (n � 53). Albumin was
measured in all samples and in ERM-DA470k/IFCC ref-
erence material (RM) by 3 immunochemical, 9 brom-
cresol green (BCG), and 12 bromcresol purple (BCP)
methods.

RESULTS: Two of 3 immunochemical procedures, 5 of 9
BCG, and 10 of 12 BCP methods recovered the RM
value within its uncertainty. One immunochemical and
3 BCG methods were biased vs the RM value. Random
error components were small for all measurement proce-
dures. The Tina-quant immunochemical method was
chosen as the reference measurement procedure based on
recovery and results of error analyses. Mean biases for
BCG vs Tina-quant were 1.5% to 13.9% and were larger
at lower albumin concentrations. BCP methods’ mean
biases were �5.4% to 1.2% irrespective of albumin con-
centration. Biases for plasma samples were generally
higher than for serum samples for all method types. For
most measurement procedures, biases were lower for se-
rum from patients on hemodialysis vs patients without
kidney disease.

CONCLUSIONS: Significant differences among immuno-
chemical, BCG, and BCP methods compromise inter-
pretation of serum albumin results. Guidelines and
calculations for clinical management of kidney and
other diseases must consider the method used for
albumin measurement until harmonization can be
achieved.
© 2016 American Association for Clinical Chemistry

Measurements of serum and plasma albumin concentra-
tions are widely used to indicate fluid balance, nutritional
status, nephrotic syndrome, and hepatic function. Albu-
min binds calcium and many hormones and is incorpo-
rated in calculations of “corrected” calcium (1 ) and free
hormone concentrations (2, 3 ). In patients with renal
disease, albumin predicts survival and hospitalization (4–
9 ). Albumin is a quality indicator for patient care in renal
dialysis centers (10 ). The National Kidney Foundation’s
Kidney Disease Outcomes Quality Initiative and Renal
Network recommend routine measurement of albumin
to monitor nutritional status of patients on maintenance
renal dialysis (11, 12 ).

Previous studies have shown differences between re-
sults of bromcresol green (BCG)3 and bromcresol purple
(BCP) dye-binding methods for albumin (13 ). These
differences are acknowledged in guidelines and treatment
goals for patients on renal dialysis. The goals are defined
as the proportion of patients whose albumin concentra-
tions are �3.5 (35 g/L) and �4.0 g/dL (40 g/L) for BCG
results, but are less well defined for BCP (11 ). In most
other applications of albumin, the method of measure-
ment is rarely considered.

Improvement in the agreement of results among dif-
ferent measurement procedures for albumin is needed to
enable use of fixed clinical decision thresholds. Previous
investigations have mostly been performed with artificial
samples (14 ), or used only 1 off-the-clot serum sample
(15 ). Many studies have compared only 1 procedure
from each method type, making it difficult to determine
if differences between methods are general method char-
acteristics or if they reflect specific implementation char-
acteristics of a method type in a manufacturer’s measure-
ment procedure.

We examined the current state of harmonization
and analytical performance of 24 commercially available
albumin measurement procedures using freshly col-
lected, nonfrozen serum and plasma from patients with-
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out renal disease and serum from patients receiving
hemodialysis.

Materials and Methods

PREPARATION OF PATIENT SAMPLES

Residual patient samples were used to prepare (a) serum
pools from patients without renal disease (n � 50 pools),
(b) heparin plasma pools from patients without renal
disease (n � 48 pools), and (c) serum pools from patients
with kidney failure collected before hemodialysis (n � 53
pools). Two to 7 individual samples were combined to
create individual pools. Non–renal disease samples were
selected from clinical locations other than kidney units.
Samples with estimated glomerular filtration rates �60
mL � min�1 � (1.73 m2)�1 calculated using the Modifi-
cation of Diet in Renal Disease study equation (isotope-
dilution mass spectrometry–traceable creatinine) or the
Chronic Kidney Disease Epidemiology Collaboration
equation were excluded from the non–renal disease pools
(16, 17 ).

Samples were submitted for routine testing at Vir-
ginia Commonwealth University and the University of
Virginia during a 3-week period in 2014. Samples were
collected between Sundays at 12 midnight and Wednes-
days at 12 noon and were centrifuged at 2500g within 5 h
from collection and stored at 2–8 °C until pooling. Each
pool was mixed by inversion, divided into 24 aliquots of
250 �L and stored in polypropylene cryovials. Aliquots
were labeled with a random study number and shipped at
2–8 °C overnight to manufacturers. The maximum time
duration from collection to analysis was 5 days. The
study protocol was approved by the Institutional Review
Boards of each institution.

PREPARATION OF ALBUMIN REFERENCE MATERIALS

The ERM-DA470k/IFCC Proteins in Human Serum
certified reference material (RM) from the Institute for
Reference Materials and Measurements was prepared
centrally at Virginia Commonwealth University. The
material was prepared according to the instructions in the
certificate of analysis. Each vial was equilibrated to room
temperature for 1 h before gravimetric addition of 1.00
mL of deionized water using a balance with 0.1 mg mass
sensitivity. Twelve (week 1) or 13 vials (weeks 2 and 3) of
reconstituted RM were pooled to obtain enough material
for distribution. A dilution of the materials was prepared
by adding 0.9% NaCl gravimetrically to the reconsti-
tuted pool for a final concentration of 2.00 g/dL (20.0
g/L). RMs were labeled with a random study number,
thus blinded to the participants, and measured in the
same runs as patient samples.

Based on the certificate of analysis, the concentra-
tion of reconstituted ERM-DA470k/IFCC was 3.72
g/dL (37.2 g/L) with uncertainty (k � 2) 0.12 g/dL (1.2

g/L). The target values for the RM pools were determined
by gravimetric reconstitution. Based on mass of water
added, the 3 pools (1 prepared each week) of ERM-
DA470k/IFCC had concentrations of 3.715, 3.727, and
3.738 g/dL (37.15, 37.27, and 37.38 g/L). The mean
value 3.727 g/dL (37.27 g/L) was used as the target to
assess recovery. The uncertainty for the mean of RM
pools (0.13 g/dL; 1.3 g/L) was the uncertainty value from
the certificate of analysis (0.12 g/dL; 1.2 g/L) plus one-
half the difference between the lowest and highest mean
values for the 3 pool preparations.

QC MATERIALS

Quadruplicate measurements of 2 or 3 QC materials
used by each manufacturer were performed at the begin-
ning, middle, and end of each run.

MEASUREMENT OF ALBUMIN BY COMMERCIAL

MEASUREMENT PROCEDURES

Sample aliquots were stored at 2–8 °C, allowed to equil-
ibrate at ambient temperature (15–25 °C) for 30 min,
mixed by inversion, and measured in quadruplicate by 24
measurement procedures in manufacturers’ laboratories
using methods based on BCG, BCP, or immunochemis-
try (see Table 1 in the Data Supplement that accompa-
nies the online version of this article at http://www.
clinchem.org/content/vol63/issue3). The Advia 1800 BCG
method was excluded owing to an apparent calibration dif-
ference for 1 run (see online Supplemental Fig. 1K).

STATISTICAL ANALYSES

A power analysis was performed to determine sample size
(18 ). 50 samples per group were needed to achieve a
power of �0.8–0.95 to detect an albumin difference of
0.05 g/dL (0.5 g/L) assuming intraassay analytical SDs of
0.1 g/dL (1 g/L) and paired-sample analysis at an � sig-
nificance level of P � 0.05.

We calculated the difference between the mean re-
sult for each method and the corresponding mean result
for the Roche Tina-quant immunochemical procedure
used as the reference measurement procedure (RMP) for
each sample. We used the generalized linear model fea-
ture of the SAS statistical package (SAS Institute) to per-
form ANOVA to compare differences in serum vs plasma
and in renal disease vs non–renal disease serum. P values
�0.05 were considered significant.

Components of measurement error were estimated
as previously described (19 ). Briefly, the error model in-
cluded contributions from intraassay precision and posi-
tion effects estimated from 4 replicate measurements of
patient samples, interassay precision estimated from 4
replicates of QC samples, sample-specific effects esti-
mated as the residual variance not explained by the other
random components, and bias vs the Roche Tina-quant
method.

Harmonization of Serum Albumin Measurement Procedures

Clinical Chemistry 63:3 (2017) 771

http://www.clinchem.org/content/vol63/issue3
http://www.clinchem.org/content/vol63/issue3


Results

Recovery of albumin in the ERM-DA470k/IFCC RM is
shown in Fig. 1. The mean value for each method was the
combined mean for each of the 3 pools of RM measured
in each of 3 weeks. The expanded uncertainty (k � 2) of
the mean value for each method was estimated as 2 times
the SE using the pooled SD from each of the 3 weekly SD
values for the replicate measurements to calculate the SE.
The Tina-quant and Immage immunochemical methods
had values within the uncertainty of the RM target value.
The BNII immunochemical method had a clearly high
bias. Five of 9 BCG methods recovered the RM target
value within its uncertainty. One BCG method had a
mean value within the uncertainty of the RM target value
but its uncertainty was outside that of the RM limit.
Three BCG methods did not recover the RM target value
with low biases from �4.9% to �9.3%. Ten of 12 BCP
methods recovered the RM target value within its uncer-
tainty. Two BCP methods had mean values within the
uncertainty of the RM target value but their uncertainties
were outside that of the RM limits.

The Joint Committee for Traceability in Laboratory
Medicine lists measurement of serum albumin by immu-

noassay with either turbidimetric or nephelometric de-
tection as an RMP (20 ). Among the 3 immunochemical
methods, Tina-quant was selected as the RMP because it
had the best recovery [�0.04 g/dL (�0.4 g/L); �1.0%]
of the ERM-DA470k/IFCC RM, supporting correct cal-
ibration traceability, and it had the lowest combined ran-
dom error components (Table 1).

Fig. 2 shows box and whisker plots for the difference
in results for each measurement procedure vs the RMP
for non–renal disease plasma and serum samples. All
BCG methods were biased high vs the RMP and had
generally higher values than BCP methods. Biases for
BCP methods were smaller than for BCG methods and
more closely clustered around zero. Mean biases were
statistically significantly higher for plasma compared to
serum for all but the BNII and Dimension RxL BCP
(Fig. 2 and online Supplemental Table 2). For immuno-
chemical methods, results for Immage were similar to
those for the Tina-quant with a mean bias of 0.01 g/dL
(0.1 g/L) for serum samples, whereas results for the BNII
were 0.26 g/dL (2.6 g/L) higher than the other 2 immu-
nochemical methods.

Fig. 3 shows box and whisker plots of the biases of
serum samples obtained from patients without disease

Fig. 1. Recovery of albumin vs target value for the pooled ERM-DA470k/IFCC RM.
The solid line is the target value for the pooled RM and the dashed lines indicate its uncertainty (k = 2). Mean values are shown for
immunochemical methods (black squares), BCG methods (green circles), and BCP methods (purple triangles). The error bars represent the
uncertainty (k = 2) for the method mean values. To convert from g/dL to SI units (g/L), multiply g/dL × 10.
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and patients on renal dialysis. With exception of Im-
mage, BN II, Vitros 5600 BCG, Dimension RxL BCP,
and Dimension Vista BCP, all measurement proce-
dures had statistically significantly lower biases for
serum from patients on renal dialysis compared to
patients without renal disease (Fig. 3 and online Sup-
plemental Table 3). The previous observation that
BCP methods had lower values than BCG methods for
serum and plasma from patients without renal disease
(Fig. 2) was also seen with serum samples from pa-
tients on renal dialysis (Fig. 3).

Table 1 presents error components analysis for
each procedure using results from the Tina-quant as
the RMP. Performance specifications for albumin
measurement can be estimated using model 2 based on
biological variation described in the Milan 2014 con-
ference (21 ). For albumin biological variation, the in-
traindividual CV of 3.2% and interindividual CV of
4.75% has been published, resulting in desirable and
minimum, respectively, analytical specifications for
CV of 1.6% and 2.4%, and for bias of 1.4% and 2.1%
(22, 23 ). Intraassay and interassay estimates of preci-

Table 1. Estimates of error components.

Approximate bias
at specified

concentrations, %f

Intraassay
precision

(PSa), CVe, %b

Interassay
precision

(QC), CV, %c

Position
effects

(QC), CV, %d
Sample-specific
effects, CV, %e

Mean
bias,
�, %

2.5 g/dL
(25 g/L)

3.5 g/dL
(35 g/L)

4.0 g/dL
(40 g/L)

Tina-quant 1.9 1.0 1.5 fixed at 0 NA NA NA NA

Immage 1.7 0.8 3.7 NAg 1.3 −2.0 2.0 2.5h

BN II 2.0 1.2 2.3 NAg 7.2h 8.5h 7.4h 5.4h

Architect c4000 BCG 0.4 0.6 0.0 3.5 3.7h 7.8h 1.9 0.8

Architect c8000 BCG 0.9 0.4 0.0 3.6 5.7h 4.9h 0.1 −0.7

Architect c16000 BCG 0.3 0.7 0.2 3.8 1.5 4.9h 0.1 −0.7

AU 680 US BCG 0.7 0.7 1.1 2.9 5.6h 8.8h 4.0h 3.2h

AU 680 Intr BCG 0.7 0.2 0.9 2.9 5.1h 8.3h 3.4h 2.6h

Vitros 5600 BCG 0.8 0.8 0.0 4.7 5.3h 8.2h 3.9h 3.3h

Cobas c501 BCG 1.4 1.3 1.8 0.0 7.7h 11.2h 6.7h 4.4h

Advia 1200 BCG 1.1 2.1 0.8 0.0 13.0h 23.0h 10.2h 7.0h

Advia 2400 BCG 0.6 2.0 0.3 4.3 13.9h 23.5h 11.0h 8.2h

Architect c4000 BCP 0.4 0.3 0.1 2.7 −4.8h −5.2h −4.3h −3.9h

Architect c8000 BCP 0.6 0.4 0.0 2.6 −4.6h −5.2h −4.2h −3.7h

Architect c16000 BCP 0.9 0.6 0.0 3.0 −5.4h −5.8h −4.7h −4.1h

DxC 800 BCP 1.0 0.3 0.0 3.5 1.0 0.8 1.0 1.6

DxC 800 BCP cm 0.6 0.3 1.4 2.0 1.2 0.0 1.8 2.0

Cobas c501 BCP 0.9 1.4 1.0 2.7 −3.5h −3.3h −2.8h −2.8h

Advia 1200 BCP 1.1 2.0 0.0 4.7 −1.3 −2.1 −0.5 0.6

Advia 1800 BCP 1.1 2.0 1.3 4.6 −1.3 −1.4 −0.6 −0.1

Advia 2400 BCP 0.6 2.1 0.0 4.8 −0.3 −0.7 −0.6 0.8

Advia XPT BCP 0.9 2.8h 0.0 3.6 −2.1 −2.7h −1.7 −1.2

Dimension RxL BCP 0.9 0.4 0.0 2.2 0.3 −1.5 1.5 1.9

Dimension Vista BCP 0.7 0.5 0.0 1.8 0.4 −0.1 1.3 0.6

a PS, patient samples.
b Between replicates, intraassay; based on 4 replicates of PS.
c Interassay; based on 4 replicates of QC samples performed at the beginning, middle, and end of each run.
d Position effects; based on QC samples.
e Sample-specific effects; based on PS.
f Bias was estimated by the moving average of 21 consecutive differences centered on the indicated value.
g Sample-specific effects could not be estimated because position effects dominated random error components.
h Indicates a parameter that exceeds the minimum performance specification based on biological variability criteria; 2.4% for intra- or interassay CV and 2.1% for bias.
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sion were 2.0% and 2.8% or less, respectively, for all
measurement procedures. Only the Advia XPT had an
interassay CV that exceeded the minimum perfor-
mance requirement and 16 of 22 methods had CVs
within the desirable specification. Position effects
were �2% for all BCG and BCP methods. The Im-
mage and BN II had position effects large enough
that sample-specific effects could not be estimated.
Sample-specific effects were �5% for all other mea-
surement procedures. With few exceptions, random
error components were small and within minimum
performance specifications for precision for all mea-
surement procedures.

The dominating error component was bias for
most measurement procedures (Table 1). Mean biases
for BCG methods ranged from 1.5% to 13.9% with
bias for all BCG methods exceeding the minimum
performance specification at 1 or more concentra-
tions. BCG methods generally exhibited larger biases
than BCP methods whose mean biases ranged from
�5.4% to 1.2%. Seven of 12 BCP methods met min-
imum performance specification for bias at all concen-

trations. BCP methods had generally lower biases than
BCG methods for samples from patients on renal di-
alysis (Fig. 3). Bias for renal dialysis samples ranged
from �2.2% to 9.1% for BCG methods and from
�7.9% to �0.7% for BCP methods (see online Sup-
plemental Table 4). Analogous error components were
observed when examined separately for each of the 3
sample types. The BN II immunochemical measure-
ment procedure had an approximate 7% bias com-
pared to either of the other 2 immunochemical proce-
dures for all sample types.

Fig. 4 shows difference plots for the least and most
biased BCG and BCP methods vs the RMP. Differ-
ence plots for all measurement procedures are shown
in online Supplemental Fig. 1. Also shown in the
Figs. are differences in results for the undiluted and
diluted ERM-DA470k/IFCC RM for BCG and BCP
methods compared to the RMP. In general, the diluted
ERM-DA470k/IFCC material exhibited a different
relationship compared to patient samples for BCG but
a similar relationship for BCP and immunochemical
methods.

Fig. 2. Difference in albumin results for each method vs the Tina-quant RMP for non–renal disease plasma (darker shade) and
non–renal disease serum (lighter shade with stripes) samples.
The boxes show the median, 25th, and 75th percentile values, and whiskers represent the 10th and 90th percentile values. Black circles
indicate values that exceed the 10th and 90th percentiles. Median values for Tina-quant were 3.28 g/dL (32.8 g/L) and 2.95 g/dL (29.5 g/L) for
serum and plasma, respectively. To convert from g/dL to SI units (g/L), multiply g/dL × 10.
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Discussion

The Joint Committee for Traceability in Laboratory
Medicine lists measurement principles based on immu-
noassay with either turbidimetric or nephelometric de-
tection of the immune complex as an RMP for albumin
in serum (20 ). ERM-DA470k/IFCC is listed as a certi-
fied RM for calibration of immunoassays. We used the
Tina-quant turbidimetric immunochemical measure-
ment procedure as the RMP to determine relative biases
among measurement procedures and sample types be-
cause it had excellent recovery of albumin in the RM,
supporting correct calibration traceability to the RM,
and small random error components. Between the other
2 immunochemical methods, the Immage nephelometric
procedure had similar performance characteristics as the
Tina-quant while the BN II had significant positive bias
vs the RM value and the Tina-quant procedure for all
sample types. These observations imply that the calibra-
tion of the BN II was incorrect and use of an immuno-
chemical measurement principle does not assure accurate
results for albumin unless calibration traceability is
verified.

In general, BCG methods were biased high com-
pared to BCP methods. Mean biases for BCP methods vs
the RMP were smaller and the magnitude of propor-
tional error did not change with concentration. In con-
trast, mean biases for BCG methods vs the RPM were
larger and proportional error varied with the concentra-
tion of albumin, with larger positive biases at lower con-
centrations. In addition, there was a larger range of dif-
ferences among the BCG methods compared to BCP
methods, suggesting that BCG methods are influenced to
a greater extent by other proteins or substances in the
samples than are BCP methods.

None of the BCG methods met the minimum per-
formance specifications for bias based on biological vari-
ability criteria over a physiologically reasonable range of
concentrations. Eight of 12 BCP methods met the min-
imum performance for bias and those that did not had
generally smaller biases than were observed for BCG
methods. Our data show that BCP methods had better
selectivity for albumin and had proportional biases; thus,
it is likely that harmonization of results can be achieved.
The variable bias with concentration and nonselectivity
of BCG methods implies that methods using BCG tech-

Fig. 3. Difference in albumin results for each method vs the Tina-quant RMP for serum samples from patients on hemodialysis
(darker shade) and non–renal disease serum samples (lighter shade with stripes).
The box shows the median, 25th, and 75th percentile values, and whiskers represent the 10th and 90th percentile values. Black circles indicate
values that exceed the 10th and 90th percentiles. The median values for Tina-quant were 3.41 g/dL (34.1 g/L) and 3.28 g/dL (32.8 g/L) for renal
and non–renal samples, respectively. To convert from g/dL to SI units (g/L), multiply g/dL × 10.
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nology cannot be harmonized and should therefore be
eliminated from use in clinical laboratories.

An observation that measurements using heparin-
ized samples caused erroneous results in BCG methods
has been reported previously (24, 25 ). All measurement
procedures in this study, with the exception of the Im-
mage nephelometric procedure, are approved by the US
Food and Drug Administration–for both serum and
heparin plasma samples. Our observations suggest that
specificity issues associated with heparinized samples
continue to be problematic for current-generation
BCG methods.

Nineteen of 24 measurement procedures claimed to
have calibration traceability to ERM-DA470k/IFCC or
its predecessor ERM-DA470 serum RM. Differences

in implementation of calibration traceability strategies
likely contributed to the biases. However, the observed
differences in results for serum vs plasma and for samples
from patients with renal disease compared to patients
without renal disease also supports albumin methods as
suffering from selectivity limitations that differ among
sample types.

Achieving harmonized results for serum and plasma
albumin using dye-binding technology will require spec-
ifying a single reagent type. Our data support BCP as the
preferred approach because the relative biases were
smaller than for BCG methods and were consistent over
the concentration interval examined, whereas BCG
methods had nonproportional biases over the concentra-
tion interval that make standardization impossible.

Fig. 4. Representative albumin difference plots for BCG and BCP methods vs the Tina-quant RMs.
Differences are shown as ln concentration [ln(conc)]. The ln concentration multiplied by 100% represents approximate % CV [100.SD(ln x)�
CV(x)] (17 ). (A), BCG method with the smallest overall bias for patient samples; (B), BCG method with the largest overall bias; (C), BCP method
with the smallest overall bias; and (D), BCP method with the largest overall bias. The diamonds show results for non–renal disease plasma
samples, the small circles show results for non–renal disease serum samples, the squares show results for renal disease serum samples, and
the larger circles show results for the undiluted and diluted ERM-DA470k/IFCC RMs. These figures are also shown with separate colored
symbols for non–renal disease plasma, non–renal disease serum, renal disease serum, and the RMs in the online Data Supplement. To convert
Tina-quant results from g/dL to SI units (g/L), multiply g/dL × 10.
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All BCP and 6 of 9 BCG methods recovered the
ERM-DA470k/IFCC RM target value similarly. Results
for patient samples and undiluted and diluted RM for
immunochemical and BCP methods vs the RMP had
similar relationships, and the RM is likely suitable for use
with these methods. However, results for the diluted RM
had noticeably different relationships for BCG methods,
and therefore diluted RMs may be noncommutable with
patient samples for BCG methods. We do not know if
the RM is diluted in calibration traceability approaches
used by manufacturers, and there may be commutability
issues with BCG methods if diluted materials are used.
The certificate of analysis states the primary intended use
of the RM is for calibration of immunoassay procedures,
includes minimal information regarding suitability for
dye-binding methods, and recommends that commut-
ability should be verified for use with a particular mea-
surement procedure. Further studies are needed to deter-
mine the commutability characteristics of RMs for the
dye-binding albumin measurement procedures.

The differences in bias of albumin measurement
procedures have implications for patient care. The Na-
tional Kidney Foundation’s guidelines on nutrition in
chronic renal failure recommend routine measurement
of albumin in patients on maintenance renal dialysis
(11, 26 ). In the US, the Centers for Medicare and Med-
icaid Services sets standards for care of dialysis patients
(27 ). Consistent with the National Kidney Foundation’s
guidelines (11 ), the goal (28 ) is for albumin concentra-
tions to be �4.0 g/dL (40 g/L) when measured by a BCG
method (or “laboratory normal” for a BCP method).

For 2016, dialysis centers are expected to achieve
albumin above 4.0 g/dL (40 g/L) in 38% of treated pa-
tients (29 ). For patients whose serum albumin is �3.5
g/dL (�35 g/L), centers must show evidence of a plan to
improve nutrition. For patients whose albumin is below
the guideline values, aggressive protein supplementation
is used (30 ). Supplements may adversely affect phospho-
rous, potassium, and other electrolyte concentrations,
the costs of supplements and personnel time are usually
nonreimbursable, and a definitive mortality benefit has
not been shown (31, 32 ). The lack of standardization in
albumin assays thus risks subjecting a large number of
dialysis patients to unproven and costly therapy.

The choice of albumin measurement procedure pro-
duced large differences in the percentages of renal disease
samples that met the goals in this study. Among BCG
methods, the goal of albumin �4.0 g/dL (�40 g/L) was
met for 32% of samples as measured by the Advia 2400
but for only 13% of samples as measured by the Architect
c16000. Similarly, 70% and 36% of the results from
these measurement procedures, respectively, were at or
above the goal of 3.5 g/dL (35 g/L). Clearly, the use of
quality goals at fixed concentrations is not tenable with
the current state of harmonization of albumin methods.

Another example of the effects of the differences
among results of measurement procedures is apparent
when using serum albumin to calculate “corrected” se-
rum calcium concentrations (33 ). The calculation at-
tempts to account for differences in the amount of cal-
cium that albumin binds, thus lowering the biologically
active unbound calcium. Such calculations are frequently
used in patients with low albumin, including patients
with liver and kidney disease and cancer. As shown by
Labriola et al. (33 ), the corrected calcium results pro-
duced discordant classifications of calcemic status when a
Roche Modular P BCG measurement procedure was
compared with a Beckman Unicel DxC 800 BCP mea-
surement procedure. Our results are consistent with these
findings and suggest that “corrected” calcium will be sub-
stantially influenced not only by the choice of BCG or
BCP methods but also by the specific implementation of
a given measurement procedure. Sample type will also
influence “corrected” calcium. Until harmonization of
albumin assays is achieved, the analytical variability of
measurements of albumin support moving away from use
of “corrected” calcium. Consistent with this view, the
2016 update of the Centers for Medicare and Medicaid
Services guidelines for dialysis centers (29 ) has replaced
reporting of “corrected calcium” with “uncorrected
calcium.”

Serum albumin is also used in the clinical decision-
aid for patients with end-stage renal disease who must
choose between kidney transplantation and dialysis (34 ).
The decision aid uses a single albumin cutpoint of 3.5
g/dL (35 g/L). For a patient with albumin below the
cutpoint, the predicted 1-year survival on renal dialysis is
decreased by up to 10%, but the predicted survival after
renal transplantation is affected little. The Emory Uni-
versity Department of Surgery website (35 ) provides fur-
ther information on this topic. The choice of albumin
measurement procedure may affect many renal dialysis
patients since, for example, 70% of results for renal dis-
ease samples in the present study were �3.5 g/dL (35
g/L) by the Advia 2400 BCG measurement procedure,
but only 36% of results for those samples were �3.5 g/dL
(35 g/L) by Architect c16000 BCG measurement
procedure.

Limitations of this study include the use of pools
rather than individual-patient samples due to sample vol-
ume limitations. Pools may not be ideal representatives of
individual samples. When samples with high concentra-
tions of albumin are mixed with lower-concentration
samples, the molecular form of albumin present in the
high sample predominates and interfering substances
present in either sample are diluted. Another limitation is
that a single measurement procedure (Tina-quant) was
used as the RMP. It is possible that sample-specific influ-
ences on the Tina-quant measurement procedure could
have confounded our observations. In addition, interas-
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say precision estimates were obtained on a limited num-
ber of runs.

In summary, BCG methods have larger biases than
BCP methods when compared to the RMP. Further-
more, the bias of BCG methods, but not BCP methods,
varies with the concentration of albumin. Due to the
general differences between measurements obtained us-
ing BCG and BCP methods, as well as differences be-
tween specific manufacturer’s implementations of each
method type, single decision thresholds for albumin con-
centration are likely inappropriate for patient-care deci-
sions. Standardization of albumin results using dye-
binding methods will require adoption of BCP as the
preferred reagent.
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