8,609 research outputs found

    Development of a triple GEM UV-photon detector operated in pure CF4 for the PHENIX experiment

    Full text link
    Results obtained with a triple GEM detector operated in pure CF4 with and without a reflective CsI photocathode are presented. The detector operates in a stable mode at gains up to 10^4. A deviation from exponential growth starts to develop when the total charge exceeds ~ 4 10^6 e leading to gain saturation when the total charge is ~ 2 10^7 e and making the structure relatively robust against discharges. No aging effects are observed in the GEM foils after a total accumulated charge of ~ 10 mC/cm^2 at the anode. The ion back-flow current to the reflective photocathode is comparable to the electron current to the anode. However, no significant degradation of the CsI photocathode is observed for a total ion back-flow charge of ~ 7 mC/cm^2.Comment: 14 pages, 11 figures, Submitted to NIM

    Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates

    Full text link
    Conformational phases of a semiflexible off-lattice homopolymer model near an attractive substrate are investigated by means of multicanonical computer simulations. In our polymer-substrate model, nonbonded pairs of monomers as well as monomers and the substrate interact via attractive van der Waals forces. To characterize conformational phases of this hybrid system, we analyze thermal fluctuations of energetic and structural quantities, as well as adequate docking parameters. Introducing a solvent parameter related to the strength of the surface attraction, we construct and discuss the solubility-temperature phase diagram. Apart from the main phases of adsorbed and desorbed conformations, we identify several other phase transitions such as the freezing transition between energy-dominated crystalline low-temperature structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure

    Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and jaffe method principles

    Get PDF
    Journal ArticleStandardized calibration does not change a creatinine measurement procedure?s susceptibility to potentially interfering substances

    Disordered quantum wires: microscopic origins of the DMPK theory and Ohm's law

    Full text link
    We study the electronic transport properties of the Anderson model on a strip, modeling a quasi one-dimensional disordered quantum wire. In the literature, the standard description of such wires is via random matrix theory (RMT). Our objective is to firmly relate this theory to a microscopic model. We correct and extend previous work (arXiv:0912.1574) on the same topic. In particular, we obtain through a physically motivated scaling limit an ensemble of random matrices that is close to, but not identical to the standard transfer matrix ensembles (sometimes called TOE, TUE), corresponding to the Dyson symmetry classes \beta=1,2. In the \beta=2 class, the resulting conductance is the same as the one from the ideal ensemble, i.e.\ from TUE. In the \beta=1 class, we find a deviation from TOE. It remains to be seen whether or not this deviation vanishes in a thick-wire limit, which is the experimentally relevant regime. For the ideal ensembles, we also prove Ohm's law for all symmetry classes, making mathematically precise a moment expansion by Mello and Stone. This proof bypasses the explicit but intricate solution methods that underlie most previous results.Comment: Corrects and extends arXiv:0912.157

    SARS-CoV-2 structural features may explain limited neutralizing-antibody responses.

    Get PDF
    Neutralizing antibody responses of SARS-CoV-2-infected patients may be low and of short duration. We propose here that coronaviruses employ a structural strategy to avoid strong and enduring antibody responses. Other viruses induce optimal and long-lived neutralizing antibody responses, thanks to 20 or more repetitive, rigid antigenic epitopes, spaced by 5–10 nm, present on the viral surface. Such arrays of repetitive and highly organized structures are recognized by the immune system as pathogen-associated structural patterns (PASPs), which are characteristic for pathogen surfaces. In contrast, coronaviruses are large particles with long spikes (S protein) embedded in a fluid membrane. Therefore, the neutralizing epitopes (which are on the S protein) are loosely “floating” and widely spaced by an average of about 25 nm. Consequently, recruitment of complement is poor and stimulation of B cells remains suboptimal, offering an explanation for the inefficient and short-lived neutralizing antibody responses
    corecore