7,394 research outputs found

    The Bag320 satellite DNA family in Bacillus stick insects (Phasmatodea): Different rates of molecular evolution of highly repetitive DNA in bisexual and parthenogenetic taxa

    Get PDF
    The Bag320 satellite DNA (satDNA) family was studied in seven populations of the stick insects Bacillus atticus (parthenogenetic, unisexual) and Bacillus grandii (bisexual). It was characterized as widespread in all zymoraces of B. atticus and in all subspecies of B. grandii. The copy number of this satellite is higher in the bisexual B. grandii (15%-20% of the genome) than in the parthenogenetic B. atticus (2%- 5% of the genome). The nucleotide sequences of 12 Bag320 clones from B. atticus and 17 from B. grandii differed at 13 characteristic positions by fixed nucleotide substitutions. Thus, nucleotide sequences from both species cluster conspecifically in phylogenetic dendrograms. The nucleotide sequences derived from B. grandii grandii could he clearly discriminated from those of B. grandii benazzii and B. grandii maretimi on the basis of 25 variable sites, although all taxa come from Sicily. In contrast, the Bag320 sequences from B. atticus could not he discriminated accordingly, although they derive from geographically quite distant populations of its three zymoraces (the Italian and Greek B. atticus atticus, the Greek and Turkish B. atticus carius, and the Cyprian B. atticus cyprius). The different rate of evolutionary turnover of the Bag320 satDNA in both species can he related to their different modes of reproduction. This indicates that meiosis and chromosome segregation affect processes in satDNA diversification

    Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates

    Full text link
    Conformational phases of a semiflexible off-lattice homopolymer model near an attractive substrate are investigated by means of multicanonical computer simulations. In our polymer-substrate model, nonbonded pairs of monomers as well as monomers and the substrate interact via attractive van der Waals forces. To characterize conformational phases of this hybrid system, we analyze thermal fluctuations of energetic and structural quantities, as well as adequate docking parameters. Introducing a solvent parameter related to the strength of the surface attraction, we construct and discuss the solubility-temperature phase diagram. Apart from the main phases of adsorbed and desorbed conformations, we identify several other phase transitions such as the freezing transition between energy-dominated crystalline low-temperature structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure

    Contact angles mediate equilibrium fractionation between soil water and water vapor

    Get PDF
    Soil water potential is a function of grain size, adhesion and cohesion energy. The mechanical equilibrium between the interfacial free energies between water-gas, water-solid and solid-gas, leads to a particular contact angle at the three phase boundary water-solid-gas. The contact angle of the solid-soil affects the water retention in soils. Contact angles >0 lead to a shift of the water retention curve to simulating a coarser soil texture. Thus, a certain amount of water is stronger bound in a soil with a low contact angle compared to the same soil with a high contact angle. The relationship between the contact angle and the fractionation of water stable isotopes between soil water and water vapor has yet not been studied. We present a simple laboratory experiment with soil samples ranging from sand to silt to clay. Two subsamples were hydrophobized (or treated with) using dichlorodimethylsilane to produce different contact angles. Subsamples were transferred into Ziploc bags spiked with water of known isotopic composition and the headspace filled with dry air. After equilibration (at least 24h) the headspace was measured for its isotopic signature with a Laserspectrometer. Soil water potential was measured with a soil water potential meter and the contact angle determined with the Wilhelmy-plate-method (WPM). The working hypothesis is that the equilibrium between water and water vapor depends on the matric potential. Having the same pore and the same water content water repellency affects the soil water potential. Therefore the hydrophobized soil will change the equilibrium fractionation between water and water vapor. Hence, the contact angle between adsorbed water and water vapor is related to isotope effects

    Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy

    Full text link
    Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy (XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow of an object lying on a surface, may be used to gather information about the three-dimensional magnetization texture inside the object. Our purpose here is to lay the basis of a quantitative analysis of this technique. We first discuss the principle and implementation of a method to simulate the contrast expected from an arbitrary micromagnetic state. Text book examples and successful comparison with experiments are then given. Instrumental settings are finally discussed, having an impact on the contrast and spatial resolution : photon energy, microscope extraction voltage and plane of focus, microscope background level, electric-field related distortion of three-dimensional objects, Fresnel diffraction or photon scattering

    The Upper Crustal Evolution of a Large Silicic Magma Body: Evidence from Crystal-scale Rb-Sr Isotopic Heterogeneities in the Fish Canyon Magmatic System, Colorado

    Get PDF
    Batholith-sized bodies of crystal-rich magmatic ‘mush' are widely inferred to represent the hidden sources of many large-volume high-silica rhyolite eruptive units. Occasionally these mush bodies are ejected along with their trapped interstitial liquid, forming the distinctive crystal-rich ignimbrites known as ‘monotonous intermediates'. These ignimbrites are notable for their combination of high crystal contents (35-55%), dacitic bulk compositions with interstitial high-silica rhyolitic glass, and general lack of compositional zonation. The 5000 km3 Fish Canyon Tuff is an archetypal eruption deposit of this type, and is the largest known silicic eruption on Earth. Ejecta from the Fish Canyon magmatic system are notable for the limited compositional variation that they define on the basis of whole-rock chemistry, whereas ∼ 45 vol. % crystals in a matrix of high-silica rhyolite glass together span a large range of mineral-scale isotopic variability (microns to millimetres). Rb/Sr isotopic analyses of single crystals (sanidine, plagioclase, biotite, hornblende, apatite, titanite) and sampling by micromilling of selected zones within glass plus sanidine and plagioclase crystals document widespread isotopic disequilibrium at many scales. High and variable 87Sr/86Sri values for euhedral biotite grains cannot be explained by any model involving closed-system radiogenic ingrowth, and they are difficult to rationalize unless much of this radiogenic Sr has been introduced at a late stage via assimilation of local Proterozoic crust. Hornblende is the only phase that approaches isotopic equilibrium with the surrounding melt, but the melt (glass) was isotopically heterogeneous at the millimetre scale, and was therefore apparently contaminated with radiogenic Sr shortly prior to eruption. The other mineral phases (plagioclase, sanidine, titanite, and apatite) have significantly lower 87Sr/86Sri values than whole-rock values (as much as −0·0005). Such isotopic disequilibrium implies that feldspars, titanite and apatite are antecrysts that crystallized from less radiogenic melt compositions at earlier stages of magma evolution, whereas highly radiogenic biotite xenocrysts and the development of isotopic heterogeneity in matrix melt glass appear to coincide with the final stage of the evolution of the Fish Canyon magma body in the upper crust. Integrated petrographic and geochemical evidence is consistent with pre-eruptive thermal rejuvenation of a near-solidus mineral assemblage from ∼720 to 760°C (i.e. partial dissolution of feldspars + quartz while hornblende + titanite + biotite were crystallizing). Assimilation and blending of phenocrysts, antecrysts and xenocrysts reflects chamber-wide, low Reynolds number convection that occurred within the last ∼10 000 years before eruptio
    corecore