33 research outputs found

    Idiopathic toe walking and sensory processing dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is generally understood that toe walking involves the absence or limitation of heel strike in the contact phase of the gait cycle. Toe walking has been identified as a symptom of disease processes, trauma and/or neurogenic influences. When there is no obvious cause of the gait pattern, a diagnosis of idiopathic toe walking (ITW) is made. Although there has been limited research into the pathophysiology of ITW, there has been an increasing number of contemporary texts and practitioner debates proposing that this gait pattern is linked to a sensory processing dysfunction (SPD). The purpose of this paper is to examine the literature and provide a summary of what is known about the relationship between toe walking and SPD.</p> <p>Method</p> <p>Forty-nine articles were reviewed, predominantly sourced from peer reviewed journals. Five contemporary texts were also reviewed. The literature styles consisted of author opinion pieces, letters to the editor, clinical trials, case studies, classification studies, poster/conference abstracts and narrative literature reviews. Literature was assessed and graded according to level of evidence.</p> <p>Results</p> <p>Only one small prospective, descriptive study without control has been conducted in relation to idiopathic toe walking and sensory processing. A cross-sectional study into the prevalence of idiopathic toe walking proposed sensory processing as being a reason for the difference. A proposed link between ITW and sensory processing was found within four contemporary texts and one conference abstract.</p> <p>Conclusion</p> <p>Based on the limited conclusive evidence available, the relationship between ITW and sensory processing has not been confirmed. Given the limited number and types of studies together with the growing body of anecdotal evidence it is proposed that further investigation of this relationship would be advantageous.</p

    Toxocariasis: a silent threat with a progressive public health impact

    Get PDF
    Background: Toxocariasis is a neglected parasitic zoonosis that afflicts millions of the pediatric and adolescent populations worldwide, especially in impoverished communities. This disease is caused by infection with the larvae of Toxocara canis and T. cati, the most ubiquitous intestinal nematode parasite in dogs and cats, respectively. In this article, recent advances in the epidemiology, clinical presentation, diagnosis and pharmacotherapies that have been used in the treatment of toxocariasis are reviewed. Main text: Over the past two decades, we have come far in our understanding of the biology and epidemiology of toxocariasis. However, lack of laboratory infrastructure in some countries, lack of uniform case definitions and limited surveillance infrastructure are some of the challenges that hindered the estimation of global disease burden. Toxocariasis encompasses four clinical forms: visceral, ocular, covert and neural. Incorrect or misdiagnosis of any of these disabling conditions can result in severe health consequences and considerable medical care spending. Fortunately, multiple diagnostic modalities are available, which if effectively used together with the administration of appropriate pharmacologic therapies, can minimize any unnecessary patient morbidity. Conclusions: Although progress has been made in the management of toxocariasis patients, there remains much work to be done. Implementation of new technologies and better understanding of the pathogenesis of toxocariasis can identify new diagnostic biomarkers, which may help in increasing diagnostic accuracy. Also, further clinical research breakthroughs are needed to develop better ways to effectively control and prevent this serious disease

    Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice

    Get PDF
    BACKGROUND: Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain( NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. METHODS: BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post- infection (wpi) by Western blotting and RT-PCR. RESULTS: Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. CONCLUSION: Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AbetaPP and phosphorylated tau emerged in the brain. DOI: 10.1186/1471-2334-8-8

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The wnt pathway: a macrophage effector molecule that triggers inflammation

    Full text link
    Wnt proteins are members of the highly conserved wingless family of proteins responsible for cell differentiation and development and for neoplastic and degenerative processes. Recently, Toll-like receptor-mediated Wnt signaling was found to be associated with innate immunity in Drosophila. Upregulation of Wnt5A in human macrophages upon microbial challenge indicated a similar mechanism. Toll-like receptor-mediated Wnt5A expression is a key process for sustained inflammatory macrophage activation through autocrine and paracrine signaling. Downregulation of Wnt5A expression and subsequent attenuation of inflammatory macrophage responses by activated protein C supports the link between inflammation and coagulation, another highly conserved biologic system. Direct evidence for the relevance of Wnt5A in severe systemic inflammation is provided by the finding of higher Wnt5A levels in patients with sepsis than in healthy individuals. The fact that Wnt5A signaling can be modulated by anti-inflammatory mediators makes this effector molecule an attractive target for therapeutic intervention in inflammatory diseases

    Empididae (Rhamphymyia)

    No full text

    Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10

    Full text link
    OBJECTIVE: Sepsis is a major cause of death for intensive care patients. High concentrations of inflammatory cytokines are characteristic of severe systemic inflammation and activated monocytes are their predominant cellular source. To identify targets for antiinflammatory intervention, we investigated the response of human macrophages to inflammatory and antiinflammatory mediators. METHODS AND RESULTS: We profiled gene expression in human macrophages exposed to lipopolysaccharide (LPS) and interferon (IFN)-gamma in the presence or absence of recombinant activated protein C (APC) or IL-10 and identified Wnt5A as one of the transcripts most highly induced by LPS/IFN-gamma and suppressed by APC and IL-10. We confirmed regulation of Wnt5A protein in macrophages and detected it in sera and bone marrow macrophages of patients with severe sepsis. We established that a functional Wnt5A/frizzled-5/CaMKII signaling pathway was essential for macrophage inflammatory activation. To prove the essential contribution of Wnt5A we measured inflammatory cytokines after stimulation with Wnt5A, silenced Wnt5A by siRNA, and blocked receptor binding with soluble Frizzled-related peptide-1 (sFRP1). CONCLUSIONS: Wnt5A is critically involved in inflammatory macrophage signaling in sepsis and is a target for antiinflammatory mediators like APC or antagonists like sFRP1

    Establishment and characterization of an arsenic-sensitive monoblastic leukaemia cell line (SigM5)

    No full text
    Few human monoblastic cell lines have been characterized to date. We have established the SigM5 cell line from a patient with acute monoblastic leukaemia (FAB M5a). Original leukaemic cells had a karyotype of 47,XY,+8, whereas the cell line showed a stemline clone of 81,XX,Y,Y,1,4,6,7,+8,+8,9,10,10,11,13,16,19[cp], with a minor sideline also present. Cytochemical staining was strongly positive with alpha-naphthylbutyrate acetate esterase, particulate positive with Sudan black and weakly positive for myeloperoxidase. Cells were positive for CD13, CD15, CD18, CD23, CD33, CD38, CD45, CD68 and myeloperoxidase. CD14 expression was 3-15%. SigM5 constitutively secreted interleukin (IL)-2, IL-8, IL-10, tumour necrosis factor (TNF)-alpha, ferritin, lysozyme, N-elastase and neopterin upon stimulation with interferon (IFN)-gamma. Cells expressed the proinflammatory mediator macrophage migration inhibitory factor (MIF). All NADPH oxidase subunits were constitutively present, but nitroblue tetrazolium reduction was only detectable upon activation with IFN-gamma. SigM5 monoblasts were sensitive to arsenic trioxide (As2O3) previously not described to induce apoptosis in monoblastic cells. Differing considerably in morphology, immunophenotype and sensitivity to arsenics from the widely used cell lines U937, HL-60 and THP-1, SigM5 is a new monoblastic cell line useful for studying leukaemogenesis, monocyte differentiation and tumour cell susceptibility to arsenic compounds

    Transcriptome analysis revealed unique genes as targets for the anti-inflammatory action of activated protein C in human macrophages

    Get PDF
    BACKGROUND: Activated protein C (APC) has been introduced as a therapeutic agent for treatment of patients with severe sepsis due to its unique anticoagulant and anti-inflammatory properties in the vascular system. In this study we investigated novel targets for the anti-inflammatory action of APC in human macrophages. METHODS: Using a genome-wide approach, effects of APC on the expression profile in inflammatory activated human macrophages were analyzed. RESULTS: We identified, for the first time, genes that are specifically regulated by APC under inflammatory conditions, such as chromatin binding protein 4B (CHMP4B) and p300/CBP-associated factor (PCAF), thus indicating a role of APC in the epigenetic control of gene transcription. A functional assay showed the influence of APC in the acetyltransferase/deacetylase activity of nuclear extracts from inflamed macrophages. CONCLUSION: Our data sheds new light on APC targets in inflammation and opens new lines of investigation that may be explored in order to further elucidate its unique molecule properties
    corecore