30 research outputs found

    Lightweight, low compression aircraft diesel engine

    Get PDF
    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included

    Interactive Effects of Drought and Fire on Co-Existing Woody and Herbaceous Communities in a Temperate Mesic Grassland

    Get PDF
    Increased drought and woody encroachment are likely to have substantial and interactive effects on grassland carbon and water cycling in the future. However, we currently lack necessary information to accurately predict grassland responses to drought-by-fire interactions in areas experiencing woody encroachment. A more thorough understanding of these interactive effects on grass-shrub physiology would improve the effectiveness of demographic vegetation models and refine predictions of future changes in grassland ecosystem function. To this end, we constructed passive rainout shelters over mature Cornus drummondii shrubs and co-existing grasses in two fire treatments (1-year and 4-year burn frequency) at the Konza Prairie Biological Station (north-eastern Kansas, USA) that reduced precipitation by 50%. Plant responses to drought and fire were monitored at the leaf-level (gas exchange, predawn and midday water potential, turgor loss point) and the whole-plant level (aboveground biomass). Here, we report results from the 2020 growing season, after three years of treatment. Photosynthetic rates of C. drummondii and Andropogon gerardii, a dominant C4 grass, were lower in drought treatments at the end of the growing season. A. gerardii also exhibited higher photosynthetic rates in the 4-year burn watershed, but C. drummondii rates were not impacted by burn frequency. Predawn and midday leaf water potential for both species, as well as turgor loss point for C. drummondii, were lower in the 4-year burn treatment, indicating increased water stress. This trend was more pronounced in drought shelters for C. drummondii. These results indicate that three years of 50% precipitation reduction has resulted in modest impacts on water stress and gas exchange in both species. Long-term studies of co-existing grasses and shrubs are useful for informing management of woody encroachment during drought and help to identify whether multiple external pressures (drought and fire) are needed to reverse grassland-to-shrubland transitions in temperate mesic grasslands

    Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation

    Get PDF
    Cell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed

    Lineage‐based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models

    Get PDF
    Process‐based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass‐dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species‐level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance‐related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage‐based functional types (LFTs), situated between species‐level trait data and PFT‐level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models

    Extreme drought impacts have been underestimated in grasslands and shrublands globally

    Get PDF
    Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought

    Investigation of biomaterials by human epithelial gingiva cells: an <it>in vitro</it> study

    Full text link
    <p>Abstract</p> <p>Introduction</p> <p>In modern medicine and dentistry the use of biomaterials is a fast developing field of increasing interest. Especially in dentistry the interaction between biomaterials like implant materials and the soft tissue in the oral cavity is in the focus of daily research. In this context the high importance of testing materials and their surfaces concerning their biocompatibility towards corresponding cells is very likely. For this purpose this study investigates cells derived from human gingival biopsies on different materials and surfaces.</p> <p>Methods</p> <p>Cells in this study were cultivated out of human biopsies by a grow out explant technique and were sub cultivated on titanium, zirconium dioxide and collagen membrane specimens. To characterise the cells on the material surfaces used in this study immunohistochemical and histological staining techniques as well as different methods of microscopy (light microscopy and SEM) were applied.</p> <p>Results</p> <p>With the aid of the explant technique and the chosen cell cultivation method it was possible to investigate the human gingiva derived cells on different materials. The data of the present study show that the human gingival cells attach and proliferate on all three tested materials by exhibiting characteristic gingival keratinocyte protein expression even after long periods of culture e.g. up to 70 days.</p> <p>Conclusions</p> <p>It could be shown that the three tested materials titanium, zirconium dioxide and collagen membrane (and their special surfaces) are good candidates for the application as materials in the dental gingival environment or, in the case of the collagen membrane as scaffold/cell-carrier for human gingival cells in tissue engineering.</p
    corecore