5,407 research outputs found

    Sensory substitution for space gloves and for space robots

    Get PDF
    Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch

    On the resistivity at low temperatures in electron-doped cuprate superconductors

    Full text link
    We measured the magnetoresistance as a function of temperature down to 20mK and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with controlled oxygen content. This allows us to access the edge of the superconducting dome on the underdoped side. The sheet resistance increases with increasing oxygen content whereas the superconducting transition temperature is steadily decreasing down to zero. Upon applying various magnetic fields to suppress superconductivity we found that the sheet resistance increases when the temperature is lowered. It saturates at very low temperatures. These results, along with the magnetoresistance, cannot be described in the context of zero temperature two dimensional superconductor-to-insulator transition nor as a simple Kondo effect due to scattering off spins in the copper-oxide planes. We conjecture that due to the proximity to an antiferromagnetic phase magnetic droplets are induced. This results in negative magnetoresistance and in an upturn in the resistivity.Comment: Accepted in Phys. Rev.

    RadioAstron space VLBI imaging of polarized radio emission in the high-redshift quasar 0642+449 at 1.6 GHz

    Full text link
    Polarization of radio emission in extragalactic jets at a sub-milliarcsecond angular resolution holds important clues for understanding the structure of the magnetic field in the inner regions of the jets and in close vicinity of the supermassive black holes in the centers of active galaxies. Space VLBI observations provide a unique tool for polarimetric imaging at a sub-milliarcsecond angular resolution and studying the properties of magnetic field in active galactic nuclei on scales of less than 10^4 gravitational radii. A space VLBI observation of high-redshift quasar TXS 0642+449 (OH 471), made at a wavelength of 18 cm (frequency of 1.6 GHz) as part of the Early Science Programme (ESP) of the RadioAstron} mission, is used here to test the polarimetric performance of the orbiting Space Radio Telescope (SRT) employed by the mission, to establish a methodology for making full Stokes polarimetry with space VLBI at 1.6 GHz, and to study the polarized emission in the target object on sub-milliarcsecond scales. Polarization leakage of the SRT at 18 cm is found to be within 9 percents in amplitude, demonstrating the feasibility of high fidelity polarization imaging with RadioAstron at this wavelength. A polarimetric image of 0642+449 with a resolution of 0.8 mas (signifying an ~4 times improvement over ground VLBI observations at the same wavelength) is obtained. The image shows a compact core-jet structure with low (~2%) polarization and predominantly transverse magnetic field in the nuclear region. The VLBI data also uncover a complex structure of the nuclear region, with two prominent features possibly corresponding to the jet base and a strong recollimation shock. The maximum brightness temperature at the jet base can be as high as 4*10^13 K.Comment: Accepted for publication in A&A, 10 pages, 6 figure

    Tactile Language for a Head-Mounted Sensory Augmentation Device

    Get PDF
    Sensory augmentation is one of the most exciting domains for research in human-machine biohybridicity. The current paper presents the design of a 2nd generation vibrotactile helmet as a sensory augmentation prototype that is being developed to help users to navigate in low visibility environments. The paper outlines a study in which the user navigates along a virtual wall whilst the position and orientation of the user’s head is tracked by a motion capture system. Vibrotactile feedback is presented according to the user’s distance from the virtual wall and their head orientation. The research builds on our previous work by developing a simplified “tactile language” for communicating navigation commands. A key goal is to identify language tokens suitable to a head-mounted tactile interface that are maximally informative, minimize information overload, intuitive, and that have the potential to become ‘experientially transparent

    Seeing with sound? Exploring different characteristics of a visual-to-auditory sensory substitution device

    Get PDF
    Sensory substitution devices convert live visual images into auditory signals, for example with a web camera (to record the images), a computer (to perform the conversion) and headphones (to listen to the sounds). In a series of three experiments, the performance of one such device (‘The vOICe’) was assessed under various conditions on blindfolded sighted participants. The main task that we used involved identifying and locating objects placed on a table by holding a webcam (like a flashlight) or wearing it on the head (like a miner’s light). Identifying objects on a table was easier with a hand-held device, but locating the objects was easier with a head-mounted device. Brightness converted into loudness was less effective than the reverse contrast (dark being loud), suggesting that performance under these conditions (natural indoor lighting, novice users) is related more to the properties of the auditory signal (ie the amount of noise in it) than the cross-modal association between loudness and brightness. Individual differences in musical memory (detecting pitch changes in two sequences of notes) was related to the time taken to identify or recognise objects, but individual differences in self-reported vividness of visual imagery did not reliably predict performance across the experiments. In general, the results suggest that the auditory characteristics of the device may be more important for initial learning than visual associations

    Phase diagrams of the 2D t-t'-U Hubbard model from an extended mean field method

    Full text link
    It is well-known from unrestricted Hartree-Fock computations that the 2D Hubbard model does not have homogeneous mean field states in significant regions of parameter space away from half filling. This is incompatible with standard mean field theory. We present a simple extension of the mean field method that avoids this problem. As in standard mean field theory, we restrict Hartree-Fock theory to simple translation invariant states describing antiferromagnetism (AF), ferromagnetism (F) and paramagnetism (P), but we use an improved method to implement the doping constraint allowing us to detect when a phase separated state is energetically preferred, e.g. AF and F coexisting at the same time. We find that such mixed phases occur in significant parts of the phase diagrams, making them much richer than the ones from standard mean field theory. Our results for the 2D t-t'-U Hubbard model demonstrate the importance of band structure effects.Comment: 6 pages, 5 figure

    Quasielastic neutron scattering and molecular dynamics simulation studies of the melting transition in butane and hexane monolayers adsorbed on graphite

    Get PDF
    Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed on an exfoliated graphite substrate, For butane, quasielastic scattering broader than the experimental energy resolution width of 70 mu eV appears abruptly at the monolayer melting point of T-m = 116 K, whereas, for the hexane monolayer, it appears 20 K below the melting transition (T-m = 170 K). To facilitate comparison with experiment, quasielastic spectra calculated from the MD simulations were analyzed using the same models and fitting algorithms as for the neutron spectra. This combination of techniques gives a microscopic picture of the melting process in these two monolayers which is consistent with earlier neutron diffraction experiments. Butane melts abruptly to a liquid phase where the molecules in the trans conformation translationally diffuse while rotating about their center of mass. In the case of the hexane monolayer, the MD simulations show that the appearance of quasielastic scattering below T-m coincides with transformation of Some molecules from trans to gauche conformations. Furthermore, if gauche molecules are prevented from forming in the simulation, the calculated incoherent scattering function contains no quasielastic component below T-m. Modeling of both the neutron and simulated hexane monolayer spectra below T-m favors a plastic phase in which there is nearly isotropic rotational diffusion of the gauche molecules about their center of mass, but no translational diffusion, The elastic scattering observed above T-m is consistent with the coexistence of solid monolayer clusters with a fluid phase, as predicted by the simulations. For T/T-m greater than or equal to 1.3, the elastic scattering vanishes from the neutron spectra where the simulation indicates the presence of a fluid phase alone, The qualitative similarities between the observed and simulated quasielastic spectra lend support to a previously proposed ''footprint reduction'' mechanism of melting in monolayers of flexible, rod-shaped molecules. (C) 1997 American Institute of Physics

    How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing

    Full text link
    The purpose of the present study was to determine the effects of a plantar pressure-based, tongue-placed tactile biofeedback on postural control mechanisms during quiet standing. To this aim, sixteen young healthy adults were asked to stand as immobile as possible with their eyes closed in two conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP) displacements, recorded using a force platform, were used to compute the horizontal displacements of the vertical projection the centre of gravity (CoGh) and those of the difference between the CoP and the vertical projection of the CoG (CoP-CoGv). Altogether, the present findings suggest that the main way the plantar pressure-based, tongue-placed tactile biofeedback improves postural control during quiet standing is via both a reduction of the correction thresholds and an increased efficiency of the corrective mechanism involving the CoGh displacements
    corecore