880 research outputs found

    Building a Learning Community for Dental Hygiene Faculty

    Get PDF
    Have you ever felt isolated in your work environment that left you feeling perplexed and stuck only to find out that colleagues felt the same way you did but had no idea to work around it? Through this practioner’s narrative, I journey through my struggle of teacher isolation to my action plan to make it better. Finding a way to identify my feelings, strengths and weaknesses and move towards change to improve my own work environment describes my experience in the Critical and Creative Thinking (CCT) graduate program. This new awareness changed the way I see myself as a leader and also gives me a new appreciation for the thinking styles of others. The main part of this synthesis paper is a faculty learning community process framework, which outlines the process of building a faculty learning community for dental hygiene educators who, like me, often feel isolated in their work place. The framework is a road map, outlining initial steps, planning, implementing and evaluating a faculty learning community. The philosophy of my faculty learning community is to create a safe, trusting environment where participants will develop in a new way through new ways of thinking, sharing, inquiry and reflection. The framework is my way to retain and use some of the skills, habits of mind, knowledge, and values I have been exposed to through my CCT experience—to keep CCT active and alive within me

    Certification of many-body systems

    Get PDF
    Quantum physics is arguably both the most successful and the most counterintuitive physical theory of all times. Its extremely accurate predictions on the behaviour of microscopic particles have led to unprecedented technological advances in various fields and yet, many quantum phenomena defy our classical intuition. Starting from the 1980’s, however, a paradigm shift has gradually taken hold in the scientific community, consisting in studying quantum phenomena not as inexplicable conundrums but as useful resources. This shift marked the birth of the field of quantum information science, which has since then explored the advantages that quantum theory can bring to the way we process and transfer information. In this thesis, we introduce scalable certification tools that apply to various operational properties of many-body quantum systems. In the first three cases we consider, we base our certification protocols on the detection of nonlocal correlations. These kinds of non-classical correlations that can displayed by quantum states allow one to assess relevant properties in a device-independent manner, that is, without assuming anything about the specific functioning of the device producing the state of interest or the implemented measurements. In the first scenario we present an efficient method to detect multipartite entanglement in a device-independent way. We do so by introducing a numerical test for nonlocal correlations that involves computational and experimental resources that scale polynomially with the system number of particles. We show the range of applicability of the method by using it to detect entanglement in various families of multipartite systems. In multipartite systems, however, it is often more informative to provide quantitative statements. We address this problem in the second scenario by introducing scalable methods to quantify the nonlocality depth of a multipartite systems, that is, the number of particles sharing nonlocal correlations among each other. We show how to do that by making use of the knowledge of two-body correlations only and we apply the resulting techniques to experimental data from a system of a few hundreds of atoms. In the third scenario, we move to consider self-testing, which is the most informative certification method based on nonlocality. Indeed, in a self-testing task, one is interested in characterising the state of the system and the measurement performed on it, by simply looking at the resulting correlations. We introduce the first scalable self-testing method based on Bell inequalities and apply it to graph states, a well-known family of multipartite quantum states. Moreover, we show that the certification achieved with our method is robust against experimental imperfections. Lastly, we address the problem of certifying the result of quantum optimizers. They are quantum devices designed to estimate the groundstate energy of classical spin systems. We provide a way to efficiently compute a convergent series of upper and lower bounds to the minimum of interest, which at each step allows one to certify the output of any quantum optimizer.La física cuántica es posiblemente la teoría física más exitosa y la más contraintuitiva jamás desarollada. A pesar de que sus predicciones extremadamente precisas sobre el comportamiento de las partículas microscópicas han llevado a avances tecnológicos sin precedentes en varios campos, muchos fenómenos cuánticos desafían nuestra intuición basada en una concepción clásica de la física. Sin embargo, a partir de la década de 1980 tuvo lugar un cambio de paradigma en la comunidad científica, que se orientó en estudiar los fenómenos cuánticos no como enigmas inexplicables, sino como recursos útiles. Este cambio marcó el nacimiento del campo de la ciencia de la información cuántica, que desde entonces ha explorado las ventajas que la teoría cuántica puede aportar a la forma en que procesamos y transferimos la información. Hoy en día es un hecho bien establecido que la codificación de información en partículas cuánticas puede llevar, por ejemplo, a procesos de cálculo más eficientes, así como a comunicaciones extremadamente seguras. Además, debido a sus aplicaciones prácticas a la vida cotidiana, la ciencia de la información cuántica ha atraído un gran interés político y económico. Recientemente se han lanzado varias iniciativas con el propósito de cerrar la brecha entre la ciencia básica y la industria en este campo, tanto a nivel nacional como internacional. Al mismo tiempo, cada vez más empresas están incrementando sus esfuerzos para producir dispositivos cuánticos a nivel comercial. No hay duda de que hemos entrado en la era de la primera generación de dispositivos cuánticos, en la cual los sistemas cuánticos controlables compuestos de decenas o cientos de partículas son cada vez más accesibles. En tal escenario, el certificar que estos dispositivos exhiben sus atractivas propiedades cuánticas constituye un problema fundamental. Es importante destacar que, para que los métodos de certificación deseados sean aplicables en situaciones reales, éstos deben ser escalables con el tamaño del sistema. En otras palabras, tienen que basarse en requerimientos computacionales y experimentales que crezcan, a lo sumo,polinomialmente con el número de partículas en el sistema de interés. En esta tesis, introducimos herramientas de certificación escalables que se aplican a varias propiedades operativas de sistemas cuánticos de muchos cuerpos. En los primeros tres casos que consideramos, basamos nuestros protocolos de certificación en la detección de correlaciones no locales. Estos tipos de correlaciones no clásicas, que únicamente pueden ser producidas por sistemas cuánticos, permiten evaluar propiedades relevantes de forma independiente del dispositivo, es decir, sin realizar hipótesis acerca del funcionamiento específico del dispositivo que produce el estado de interés o las mediciones implementadas. En el primer escenario, presentamos un método eficiente para detectar entrelazamiento en sistemas multipartitos de forma independiente del dispositivo. Lo hacemos mediante la introducción de una prueba numérica para las correlaciones no locales que involucra recursos computacionales y experimentales que escalan polinomialmente con el número de partículas del sistema. Mostramos el rango de aplicabilidad de dicho método usándolo para detectar entrelazamiento en varias familias de sistemas multipartitos. Sin embargo, al tratar con sistemas de muchos cuerpos a menudo es más informativo proporcionar informaciones cuantitativas. Abordamos este problema en el segundo escenario mediante la introducción de métodos escalables para cuantificar la profundidad no local (non-locality depth) de un sistema multipartito, es decir, la cantidad de partículas que comparten correlaciones no locales entre sí. Mostramos cómo realizar dicha cuantificación a partir del conocimiento únicamente de los correladores de dos cuerpos, y aplicamos las técnicas resultantes a los datos experimentales de un sistema de unos pocos cientos de átomos. En el tercer escenario, pasamos a considerar el caso de self-testing, que es el método de certificación más informativo basado en la no localidad. De hecho, en una tarea de self-testing, el objetivo es caracterizar el estado del sistema y las mediciones realizadas en él, simplemente observando las correlaciones resultantes. Introducimos el primer método de self-testing escalable basado en las desigualdades de Bell y lo aplicamos a estados de grafo, una familia muy conocida de estados cuánticos multipartitos. Además, demostramos que la certificación lograda con nuestro método es robusta a imperfecciones experimentales. Por último, consideramos el problema de certificar el resultado de optimizadores cuánticos. Estos son dispositivos cuánticos diseñados para estimar la energía del estado fundamental de sistemas de espines clásicos. Desarollamos un método eficiente para calcular una serie convergente de límites superiores e inferiores al mínimo de interés, que en cada paso permite certificar el resultado de cualquier optimizador cuánticoPostprint (published version

    Certification of many-body systems

    Get PDF
    Quantum physics is arguably both the most successful and the most counterintuitive physical theory of all times. Its extremely accurate predictions on the behaviour of microscopic particles have led to unprecedented technological advances in various fields and yet, many quantum phenomena defy our classical intuition. Starting from the 1980’s, however, a paradigm shift has gradually taken hold in the scientific community, consisting in studying quantum phenomena not as inexplicable conundrums but as useful resources. This shift marked the birth of the field of quantum information science, which has since then explored the advantages that quantum theory can bring to the way we process and transfer information. In this thesis, we introduce scalable certification tools that apply to various operational properties of many-body quantum systems. In the first three cases we consider, we base our certification protocols on the detection of nonlocal correlations. These kinds of non-classical correlations that can displayed by quantum states allow one to assess relevant properties in a device-independent manner, that is, without assuming anything about the specific functioning of the device producing the state of interest or the implemented measurements. In the first scenario we present an efficient method to detect multipartite entanglement in a device-independent way. We do so by introducing a numerical test for nonlocal correlations that involves computational and experimental resources that scale polynomially with the system number of particles. We show the range of applicability of the method by using it to detect entanglement in various families of multipartite systems. In multipartite systems, however, it is often more informative to provide quantitative statements. We address this problem in the second scenario by introducing scalable methods to quantify the nonlocality depth of a multipartite systems, that is, the number of particles sharing nonlocal correlations among each other. We show how to do that by making use of the knowledge of two-body correlations only and we apply the resulting techniques to experimental data from a system of a few hundreds of atoms. In the third scenario, we move to consider self-testing, which is the most informative certification method based on nonlocality. Indeed, in a self-testing task, one is interested in characterising the state of the system and the measurement performed on it, by simply looking at the resulting correlations. We introduce the first scalable self-testing method based on Bell inequalities and apply it to graph states, a well-known family of multipartite quantum states. Moreover, we show that the certification achieved with our method is robust against experimental imperfections. Lastly, we address the problem of certifying the result of quantum optimizers. They are quantum devices designed to estimate the groundstate energy of classical spin systems. We provide a way to efficiently compute a convergent series of upper and lower bounds to the minimum of interest, which at each step allows one to certify the output of any quantum optimizer.La física cuántica es posiblemente la teoría física más exitosa y la más contraintuitiva jamás desarollada. A pesar de que sus predicciones extremadamente precisas sobre el comportamiento de las partículas microscópicas han llevado a avances tecnológicos sin precedentes en varios campos, muchos fenómenos cuánticos desafían nuestra intuición basada en una concepción clásica de la física. Sin embargo, a partir de la década de 1980 tuvo lugar un cambio de paradigma en la comunidad científica, que se orientó en estudiar los fenómenos cuánticos no como enigmas inexplicables, sino como recursos útiles. Este cambio marcó el nacimiento del campo de la ciencia de la información cuántica, que desde entonces ha explorado las ventajas que la teoría cuántica puede aportar a la forma en que procesamos y transferimos la información. Hoy en día es un hecho bien establecido que la codificación de información en partículas cuánticas puede llevar, por ejemplo, a procesos de cálculo más eficientes, así como a comunicaciones extremadamente seguras. Además, debido a sus aplicaciones prácticas a la vida cotidiana, la ciencia de la información cuántica ha atraído un gran interés político y económico. Recientemente se han lanzado varias iniciativas con el propósito de cerrar la brecha entre la ciencia básica y la industria en este campo, tanto a nivel nacional como internacional. Al mismo tiempo, cada vez más empresas están incrementando sus esfuerzos para producir dispositivos cuánticos a nivel comercial. No hay duda de que hemos entrado en la era de la primera generación de dispositivos cuánticos, en la cual los sistemas cuánticos controlables compuestos de decenas o cientos de partículas son cada vez más accesibles. En tal escenario, el certificar que estos dispositivos exhiben sus atractivas propiedades cuánticas constituye un problema fundamental. Es importante destacar que, para que los métodos de certificación deseados sean aplicables en situaciones reales, éstos deben ser escalables con el tamaño del sistema. En otras palabras, tienen que basarse en requerimientos computacionales y experimentales que crezcan, a lo sumo,polinomialmente con el número de partículas en el sistema de interés. En esta tesis, introducimos herramientas de certificación escalables que se aplican a varias propiedades operativas de sistemas cuánticos de muchos cuerpos. En los primeros tres casos que consideramos, basamos nuestros protocolos de certificación en la detección de correlaciones no locales. Estos tipos de correlaciones no clásicas, que únicamente pueden ser producidas por sistemas cuánticos, permiten evaluar propiedades relevantes de forma independiente del dispositivo, es decir, sin realizar hipótesis acerca del funcionamiento específico del dispositivo que produce el estado de interés o las mediciones implementadas. En el primer escenario, presentamos un método eficiente para detectar entrelazamiento en sistemas multipartitos de forma independiente del dispositivo. Lo hacemos mediante la introducción de una prueba numérica para las correlaciones no locales que involucra recursos computacionales y experimentales que escalan polinomialmente con el número de partículas del sistema. Mostramos el rango de aplicabilidad de dicho método usándolo para detectar entrelazamiento en varias familias de sistemas multipartitos. Sin embargo, al tratar con sistemas de muchos cuerpos a menudo es más informativo proporcionar informaciones cuantitativas. Abordamos este problema en el segundo escenario mediante la introducción de métodos escalables para cuantificar la profundidad no local (non-locality depth) de un sistema multipartito, es decir, la cantidad de partículas que comparten correlaciones no locales entre sí. Mostramos cómo realizar dicha cuantificación a partir del conocimiento únicamente de los correladores de dos cuerpos, y aplicamos las técnicas resultantes a los datos experimentales de un sistema de unos pocos cientos de átomos. En el tercer escenario, pasamos a considerar el caso de self-testing, que es el método de certificación más informativo basado en la no localidad. De hecho, en una tarea de self-testing, el objetivo es caracterizar el estado del sistema y las mediciones realizadas en él, simplemente observando las correlaciones resultantes. Introducimos el primer método de self-testing escalable basado en las desigualdades de Bell y lo aplicamos a estados de grafo, una familia muy conocida de estados cuánticos multipartitos. Además, demostramos que la certificación lograda con nuestro método es robusta a imperfecciones experimentales. Por último, consideramos el problema de certificar el resultado de optimizadores cuánticos. Estos son dispositivos cuánticos diseñados para estimar la energía del estado fundamental de sistemas de espines clásicos. Desarollamos un método eficiente para calcular una serie convergente de límites superiores e inferiores al mínimo de interés, que en cada paso permite certificar el resultado de cualquier optimizador cuántic

    Preserving Catholic Identity in Catholic Secondary Schools and the Impact on Catholic Identity by Non-Catholic and International Students

    Get PDF
    The purpose of Catholic education has always been to educate students on the mission of the Catholic Church which is evangelization. This study examined the prospect of preserving Catholic identity in Catholic secondary schools that enroll non-Catholic and international students. Research revealed there was limited material available on non-Catholic students, but there was no study conducted on international students. It is precisely because there is no research on the experiences of international students in Catholic secondary schools that this study directs its attention. Specifically, the focus of research is directed on Catholic identity: what Catholic identity is; how one instills Catholic identity in a secondary school and the impact on Catholic identity by non-Catholic and international students. The dissertation utilized a quantitative methodology of surveying students, faculty, and administrators. The Catholic Identity Defining Characteristics Survey and the Catholic Identity Program Effectiveness Survey (Ozar & Weitzel-O’Neill, 2012) were combined and presented to the participants. Both surveys are contained in the National Standards and Benchmarks for Effective Catholic Schools (2012) which served as the theoretical framework for this study. This dissertation also employed the conceptual framework of relationships, “a coherent and relevant framework for thinking about Catholic identity and charism in contemporary schools using relationships as the organizing principle” (Cook & Simonds, 2011, p. 319). Eight Catholic secondary schools that were randomly selected from across the U.S. agreed to participate in this research. A total of 126 students responded to the student survey. Approximately half of the respondents were international students (n = 65, 51.6%). A total of 56 individuals responded to the administrator/faculty survey (n = 56). The results suggest that non-Catholic and international students do not impact the Catholic identity in secondary schools. The results also highlighted two notable responses that point to administrators and faculty negatively impacting Catholic identity: (1) students were most concerned that although administrators and faculty members wanted to be present for their students, for unknown reasons, were not available; and (2) administrators and faculty were concerned that there was the lack of “communion and community” at their schools

    Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems

    Full text link
    Bell inequalities are an important tool in device-independent quantum information processing because their violation can serve as a certificate of relevant quantum properties. Probably the best known example of a Bell inequality is due to Clauser, Horne, Shimony and Holt (CHSH), which is defined in the simplest scenario involving two dichotomic measurements and whose all key properties are well understood. There have been many attempts to generalise the CHSH Bell inequality to higher-dimensional quantum systems, however, for most of them the maximal quantum violation---the key quantity for most device-independent applications---remains unknown. On the other hand, the constructions for which the maximal quantum violation can be computed, do not preserve the natural property of the CHSH inequality, namely, that the maximal quantum violation is achieved by the maximally entangled state and measurements corresponding to mutually unbiased bases. In this work we propose a novel family of Bell inequalities which exhibit precisely these properties, and whose maximal quantum violation can be computed analytically. In the simplest scenario it recovers the CHSH Bell inequality. These inequalities involve dd measurements settings, each having dd outcomes for an arbitrary prime number d3d\geq 3. We then show that in the three-outcome case our Bell inequality can be used to self-test the maximally entangled state of two-qutrits and three mutually unbiased bases at each site. Yet, we demonstrate that in the case of more outcomes, their maximal violation does not allow for self-testing in the standard sense, which motivates the definition of a new weak form of self-testing. The ability to certify high-dimensional MUBs makes these inequalities attractive from the device-independent cryptography point of view.Comment: 19 pages, no figures, accepted in Quantu

    A sufficient conditions for global quadratic optimization

    Get PDF
    This paper is devoted to global optimality conditions for quadratic optimization problems in a real space of dimension n. More precisely, we are concerned with nonconvex quadratic optimization problems with linear constraints. We present some sufficient conditions of global optimality for such problems subject to linear equality and inequality constraints. We prove that when the set of Karush-Kuhn-Tucker triplets of this problem is convex, then a local minimizer is global

    Typical Correlation Length of Sequentially Generated Tensor Network States

    Full text link
    The complexity of quantum many-body systems is manifested in the vast diversity of their correlations, making it challenging to distinguish the generic from the atypical features. This can be addressed by analyzing correlations through ensembles of random states, chosen to faithfully embody the relevant physical properties. Here, we focus on spins with local interactions, whose correlations are extremely well captured by tensor network states. Adopting an operational perspective, we define ensembles of random tensor network states in one and two spatial dimensions that admit a sequential generation. As such, they directly correspond to outputs of quantum circuits with a sequential architecture and random gates. In one spatial dimension, the ensemble explores the entire family of matrix product states, while in two spatial dimensions, it corresponds to random isometric tensor network states. We extract the scaling behavior of the average correlations between two subsystems as a function of their distance. Using elementary concentration results, we then deduce the typical case for measures of correlation such as the von Neumann mutual information and a measure arising from the Hilbert-Schmidt norm. We find for all considered cases that the typical behavior is an exponential decay (for both one and two spatial dimensions). We observe the consistent emergence of a correlation length that depends only on the underlying spatial dimension and not the considered measure. Remarkably, increasing the bond dimension leads to a higher correlation length in one spatial dimension but has the opposite effect in two spatial dimensions.Comment: Updated to match published versio
    corecore