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Abstract

The foundation of the work of this thesis is based around the involutory pro-

genitor and the finite homomorphic images found therein. This process is developed

by Robert T. Curtis and he defines it as 2∗n : N{πw|π ∈ N,w} where 2∗n denotes a

free product of n copies of the cyclic group of order 2 generated by involutions. We

repeat this process with different control groups and a different array of possible rela-

tions to discover interesting groups, such as sporadic, linear, or unitary groups, to name

a few. Predominantly this work was produced from transitive groups in 6,10,12, and

18 letters. Which led to identify some appealing groups for this project, such as Janko

group J1, Symplectic groups S(4, 3) and S(6, 2), Mathieu group M12 and some linear

groups such as PGL2(7) and L2(11). With this information, we performed double coset

enumeration on some of our findings, M12 over L2(11) and L2(31) over D15. We will

also prove their isomorphism types with the help of the Jordan-Holder theorem, which

aids us in defining the make up of the group. Some examples that we will encounter are

the extensions of L2(31)•2 and A5 : 22.
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Chapter 1

Definitions, Theorems, and

Lemmas

1.1 Preliminaries

1.1.1 Definitions

Definition 1.1. A group G (G, ∗) is a nonempty collection of elements with an asso-

ciative operation ∗, such that:

• there exists an identity element, e ∈ G such that e ∗ a = a ∗ e for all a ∈ G;

• for every a ∈ G, there exists an element b ∈ G such that a ∗ b = e = b ∗ a. [Rot95]

Definition 1.2. Let G be a set. A (binary) operation on G is a function that assigns

each ordered pair of elements of G an element on G. [Rot95]

Definition 1.3. For group G, a subgroup S of G is a nonempty subset where s ∈ G
implies s−1 ∈ G and s, t ∈ G imply st ∈ G. We denote subgroup S of G as S ≤ G.

[Rot95]

Definition 1.4. Let H be a subgroup of group G. H is a proper subgroup of G if

H 6= G. We denote this as H < G. [Rot95]

Definition 1.5. A symmetric group, SX , is the group of all permutations of X,

where X ∈ N. SX is a group under compositions. [Rot95]
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Definition 1.6. If X is a nonempty set, a permutation of X is a bijection φ : X −→
X. [Rot95]

Definition 1.7. A semigroup (G, ∗) is a nonempty set G equipped with an associative

operation. [Rot95]

Definition 1.8. If x ∈ X and φ ∈ SX , then φ fixes x if φ(x) = x and φ moves x if

φ(x) 6= x. [Rot95]

Definition 1.9. For permutations α, β ∈ SX , α and β are disjoint if every element

moved by one permutation is fixed by the other. Precisely,

if α(x) 6= x, then β(a) = a and if α(y) = y, then β(y) 6= y. [Rot95]

Definition 1.10. A permutation which interchanges a pair of elements is a transpo-

sition. [Rot95]

Definition 1.11. In group G, if a,b ∈ G, a and b commute if a ∗ b = b ∗ a. [Rot95]

Definition 1.12. A group G is abelian if every pair of elements in G commutes with

one another. [Rot95]

Definition 1.13. Let X be a set and ∆ by a family of words on X. A group G has

generators X and relations ∆ if G ∼= F/R, where F is a free group with basis X and

R is the normal subgroup of F generated by ∆. We say < X|∆ > is a presentation

of G. [Rot95]

Definition 1.14. Let G be a group and T = t1, t2, ..., tn be a symmetric generating set

for G with |ti| = m. Then if N = NG(T̄ ), then we define the progenitor to be the semi

direct product m∗n : N , where m∗n is the free product of n copies of the cyclic group Cn.

[Cur07]

Definition 1.15. Let G be a group. If H ≤ G, the normalizer of H in G is defined

by NG(H) = {a ∈ G|aHa−1 = H}. [Rot95]

Definition 1.16. Let G be a group. If H ≤ G, the centralizer of H in G is:

CG(H) = {x ∈ G : [x, h] = 1 for all h ∈ H}. [Rot95]
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Definition 1.17. Let p be prime. If G ∼= Zp×Zp×· · ·×Zp, then we say G is elementary

abelian. [Rot95]

Definition 1.18. Let (G, ∗) and (H, ◦) be groups. The function φ : G → H is a

homomorphism if φ(a ∗ b) = φ(a) ◦ φ(b), for all a,b ∈ G. An isomorphism is a

bijective homomorphism. We say G is isomorphic to H, G ∼= H, if there is exists an

isomorphism f : G→ H. [Rot95]

Definition 1.19. Let f : G → H be a homomorphism. The kernel of a homomor-

phism is the set {x ∈ G|f(x) = 1}, where 1 is the identity in H. We denote the kernel

of f as ker f . [Rot95]

Definition 1.20. Let X be a nonempty subset of a group G. Let w ∈ G where w =

xe11 x
e2
2 . . . xenn , with xi ∈ X and ei = ±1. We say that w is a word on X. [Rot95]

Definition 1.21. Let a ∈ G, where G is a group. The conjugacy class of a is given

by aG = {ag|g ∈ G} = {g−1ag|g ∈ G}. [Rot95]

Definition 1.22. The Dihedral Group Dn, n even and greater than 2, groups are

formed by two elements, one of order n
2 and one of order 2. A presentation for a

Dihedral Group is given by < a, b|a
n
2 , b2, (ab)2 >. [Rot95]

Definition 1.23. A general linear group, GL(n,F) is the set of all n × n matrices

with nonzero determinant over field F. [Rot95]

Definition 1.24. A special linear group, SL(n,F) is the set of all n × n matrices

with determinant 1 over field F. [Rot95]

Definition 1.25. A projective special linear group, PSL(n,F) is the set of all

n× n matrices with determinant 1 over field F factored by its center:

PSL(n,F) = Ln(F) =
SL(n,F)

Z(SL(n,F)
. [Rot95]

Definition 1.26. A projective general linear group, PGL(n,F) is the set of all

n× n matrices with nonzero determinant over field F factored by its center:

PGL(n,F) =
GL(n,F)

Z(GL(n,F)
. [Rot95]
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Definition 1.27. (Monomial Character) Let G be a finite group and H ≤ G. The

character X of G is monomial if X = λG, where λ is a linear character of H. [Led87]

Definition 1.28. (Character) Let A(x) = (Aij(x)) be a matrix representation of G of

degree m. We consider the character polynomial of A(x), namely

det(λI −A(x)) =


λ− a11(x) −a12(x) · · · −a1m(x)

λ− a11(x) −a12(x) · · · −a1m(x)

· · · · · · · · · · · ·
λ− am1(x) −am2(x) · · · −amm(x)


This is a polynomial of degree m in λ, and inspection shows that the coefficient of −λm−1

is equal to

φ = a11(x) + a22(x) + ...+ amm(x)

It is customary to call the right-hand side of this equation the trace of A(x), abbreviated

to trA(x), so that

φ(x) = trA(x)

We regard φ(x) as a function on G with values in K, and we call it the character of

A(x). [Led87]

Definition 1.29. The sun of squares of the degrees of the s=distinct irreducible charac-

ters of G is equal to |G|. The degree of a character χ is χ(1). Note that a character

whose degree is 1 is called a linear character. [Led87]

Definition 1.30. (Lifting Process) Let N be a normal subgroup of G and suppose

that A0(Nx) is a representation of degree m of the group G/N . Then A(x) = A0(N(x)

defines a representation of G/N lifted from G/N . If φ0(Nx) is a character of A0(Nx),

then φ(x) = φ0(Nx) is the lifted character of A(x). Also, if u ∈ N , then A(u) =

Im, φ(u) = m = φ(1). Then lifting process preserves irreducibility. [Led87]

Definition 1.31. (Induced Character) Let H ≤ G and φ(u) be a character of H and

defined φ(x) = 0 if x ∈ H, then
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φG(x) =

 φ(x) x ∈ H
0 x /∈ H

is an induced character of G. [Led87]

Definition 1.32. Let G be a finite group and H be a subgroup such that [G : H] = n.

Let Cα, α = 1, 2, ...,m be the conjugacy classes of G with |Cα| = hα, α = 1, 2, 3, ...,m.

Let φ be a character of H and φG be the character of G induced from the character φ

of H up to G. The values of φG on the m classes of G are given by:

φGα =
n

hα

∑
w∈H∩Cα

φ(w), α = 1, 2, 3, ...,m.[Led87]

Definition 1.33. Let G be a group. The order of G is the number of elements contained

in G. We denote the order of G by |G|. [Rot95]

Definition 1.34. Let G be a group such that K ≤ G. K is normal in G if gKg−1 = K,

for every g ∈ G. We will use K CG to denote K as being normal in G. [Rot95]

Definition 1.35. Let G be a group and S ⊆ G. For t ∈ G, a right coset of S in G is

the subset of G such that St = {st : s ∈ G}. We say t is a representative of the coset

St. [Rot95]

Definition 1.36. Let G be a group. The index of H ≤ G, denoted [G : H], is the

number of right cosets of H in G. [Rot95]

Definition 1.37. Let G be a group and H and K be subgroups of G. A double coset

of H and K of the form HgK = {HgK|k ∈ K} is determined by g ∈ G. [Rot95]

Definition 1.38. Let N be a group. The point stabilizer of w in N is given by:

Nw = {n ∈ N |wn = w}, where w is a word in the ti’s. [Rot95]

Definition 1.39. Let N be a group. The coset stabilizer of Nw in N is given by:

N (w) = {n ∈ N |Nwn = Nw}, where w is a word of the ti’s. [Rot95]

Definition 1.40. Let G be a group. The center of G, Z(G), is the set of all elements

in G that commute with all elements of G. [Rot95]
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Definition 1.41. A symmetric presentation of a group G is a definition of G of the

form:

G ∼= 2∗n:N
π1ω1,π2ω2,...

where 2∗n denotes a free product of n copies of the cyclic group of order 2, N is transitive

permutation group of degree n which permutes the n generators of the cyclic group by

conjugation, thus defining semi-direct product, and the relators π1ω1, π2ω2, ... have been

factored out. [Led87]

Definition 1.42. We defined

N i = CN (ti);N ij = CN (〈ti, tj〉) etc,

single point and two point stabilizer in N respectively. The coset stabilizing subgroup,

N (w), of N is given by

N (w) = π ∈ N : Nwπ = Nw,

for w a word in the symmetric generators. Clearly Nw ≤ N (w), and the number of

cosets in the double coset [w] = NwN is given by |N |/|N (w)|, since Nwπ1 6= Nwπ2
⇐⇒ Nwπ1π−12 6= Nw
⇐⇒ π1π2 /∈ N (w)

⇐⇒ N (w)π1π
−1
2 6= N (w)

⇐⇒ N (w)π1 6= N (w)π2.

Double Coset Enumeration Arithmetic

In order to obtain the index of N in G we shall perform a manual double coset enumera-

tion of G over N ; thus we must find all double cosets [w] and work out how many single

cosets each of them contains. We shall know that we have completed the double coset

enumeration when the set of right cosets obtained is closed under right multiplication.

Moreover, the completion test above is best performed by obtaining the orbits of N (w)

on the symmetric generators. We need only identify, for each [w], the double coset to

which Nwti belongs for one symmetric generator ti from each orbit. [Cur07]

Definition 1.43. First Isomorphism Theorem(F.I.T). Let φ : G→ H is a homo-

morphism with Kerφ. Then,
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•Kerφ E G
•G/Kerφ ∼= imgφ [Rot95]

1.1.2 Theorems

Theorem 1.44. The number of irreducible character of G is equal to the number of

conjugacy classes of G. [Cur07]

Theorem 1.45. Let φ : G → H be a homomorphism with kernel K. Then K is a

normal subgroup of G and G/K ∼= imφ. [Rot95]

Theorem 1.46. Let N and T be subgroups of G with N normal. Then N ∩T is normal

in T and T/(N ∩ T ) ∼= NT/N . [Rot95]

Theorem 1.47. Every permutation α ∈ Sn is either a cycle or a product of disjoint

cycles. [Rot95]

Theorem 1.48. Let f : (G, ∗)→ (G′, ◦) be a homomorphism. The following hold true:

• f(e) = e′, where e′ is the identity in G′,

• If a ∈ G, then f(a−1) = f(a)−1,

• If a ∈ G and n ∈ Z, then f(an) = f(a)n. [Rot95]

Theorem 1.49. The intersection of any family of subgroups of a group G is again a

subgroup of G. [Rot95]

Theorem 1.50. If S ≤ G, then any two right (or left) cosets of S in G are either

identical or disjoint. [Rot95]

Theorem 1.51. If G is a finite group and H ≤ G, then |H| divides |G| and [G : H] =

|G|/|H|. [Rot95]

Theorem 1.52. If S and T are subgroups of a finite group G, then

|ST ||S ∩ T | = |S||T |. [Rot95]

Theorem 1.53. If N CG, then the cosets of N in G form a group, denoted by G/N ,

of order [G : N ]. [Rot95]
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Theorem 1.54. The commutator subgroup G′ is a normal subgroup of G. Moreover,

if H CG, then G/H is abelian if and only if G′ ≤ H. [Rot95]

Theorem 1.55. Let G be a group with normal subgroups H and K. If HK = G and

H ∩K = 1, then G ∼= H ×K. [Rot95]

Theorem 1.56. If a ∈ G, the number of conjugates of a is equal to the index of its

centeralizer:

|aG| = [G : CG(a)],

and this number is a divisor of |G| when G is finite. [Rot95]

Theorem 1.57. If H ≤ G, then the number c of conjugates of H in G is equal to the

index of its normalizer: c = [G : NG(H)], and c divides |G| when G is finite. Moreover,

aHa−1 = bHb−1 if and only if b−1a ∈ NG(H). [Rot95]

Theorem 1.58. Every group G can be imbedded as a subgroup of SG. In particular, if

|G| = n, then G can be imbedded in Sn. [Rot95]

Theorem 1.59. If H ≤ G and [G : H] = n, then there is a homomorphism ρ : G→ Sn

with kerρ ≤ H. The homomorphism ρ is called the representation of G on the cosets of

H. [Rot95]

Theorem 1.60. If X is a G-set with action α, then there is a homomorphism α̃ : SX

given by α̃ : x 7→ gx = α(g, x). Conversely, every homomorphism ϕ : G → SX defines

an action, namely, gx = ϕ(g)x, which makes X into a G-set. [Rot95]

Theorem 1.61. Every two composition series of a group G are equivalent.

We will refer to this Theorem as the Jordan-Hölder Theorem. [Rot95]

Theorem 1.62. Let X be a faithful primitive G-set of degree n ≥ 2. If H C G and if

H 6= 1, then X is a transitive H-set. Also, n divides |H|. [Rot95]

1.1.3 Lemmas

Lemma 1.63. Let X be a G-set, and let xy ∈ X.

• If H ≤ G, then Hx ∩Hy 6= ∅ implies Hx = Hy.

• If H CG, then the subsets Hx are blocks of X. [Rot95]
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Chapter 2

Building a Progenitor

2.1 Introduction

One of the major goals of this thesis project is to produce finite homomorphic

images of finite non-abelian simple groups; to be able to construct such we follow the

method of Robert T. Curtis’ involutory progenitor. According to Curtis, a progenitor is

a semi-direct product is defined as P ∼= 2∗n : N = {πw|π ∈ N,w reduced word in the ti}[Cur07];

where N is our control group. Thus, a good starting point would be to construct a con-

trol group N .

2.2 Control Group

There are many ways to approach a control group. One of the possible starting

points is to look into Transitive Groups in n letters. The following code produces all

the subgroups that are found in the transitive group in 15 letters:

> TransitiveGroups(15);
[

Permutation group acting on a set of cardinality 15
Order = 15 = 3 * 5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15),
Permutation group acting on a set of cardinality 15
Order = 30 = 2 * 3 * 5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
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(1, 14)(2, 13)(3, 12)(4, 11)(5, 10)(6, 9)(7, 8),
Permutation group acting on a set of cardinality 15
Order = 30 = 2 * 3 * 5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
(1, 4)(2, 8)(3, 12)(6, 9)(7, 13)(11, 14),

Permutation group acting on a set of cardinality 15
Order = 30 = 2 * 3 * 5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
(1, 11)(2, 7)(4, 14)(5, 10)(8, 13),

Permutation group acting on a set of cardinality 15
Order = 60 = 2ˆ2 * 3 * 5

(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)... .

The list is cut short because the transitive group in 15 letter has a total of 104 subgroups,

and listing all would take up too much space. We will demonstrate an example of

building an involutory progenitor using the fifth listed subgroup of Transitive Group

15, which will be labeled as such:

> N:=TransitiveGroup(15,5);
> N;
Permutation group N acting on a set of cardinality 15
Order = 60 = 2ˆ2 * 3 * 5

(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)

>
> S:=Sym(15);
> xx:=S!(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8);
> yy:=S!(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13);
> N:=sub<S|xx,yy>;
> #N;
60.

The permutations x = (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8) and

y = (1, 4, 10)(2, 5, 8)(37, 11)(6, 9, 15)(12, 14, 13) will generate the control group. The

following code will help build a permutation representation of the control group N :

> FPGroup(N);
Finitely presented group on 2 generators
Relations

$.1ˆ5 = Id($)
$.2ˆ3 = Id($)
($.1 * $.2 * $.1)ˆ2 = Id($)
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this is the beginning of building the progenitor. From the code above, we will interpret

.1 to be x and .2 to be y. Thus, the control group N is N =< x, y|x5, y3, (xyx)2 >,

where N is Alternating Group 5 and can be proved by the code below,

> NL:=NormalLattice(N);
> NL;

Normal subgroup lattice
-----------------------

[2] Order 60 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

> IsIsomorphic(N,Alt(5));
true Homomorphism of GrpPerm: N, Degree 15,
Order 2ˆ2 * 3 * 5 into GrpPerm: $,
Degree 5, Order 2ˆ2 * 3 * 5 induced by

(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
|--> (1, 2, 5, 3, 4)
(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)
|--> (1, 2, 4).

Since N is of order 60, our first instinct is to ask MAGMA if it is isomorphic to Alt(5),

another group that could have been tested that is also of order 60 could have been

Dihedral Group 60 (or as MAGMA labeled Dihedral Group 30). However, the latter

guess would have proven to be false.

The next approach is to find what stabilizes the t we choose to work with; in

this case we will let t refer to t1 out of the possible 15 ti’s in the control group. The

permutations that stabilize t are given in letters (permutations), thus we will use the

Schreier System to convert those permutations into words. The following code shows

the process:

> N1:=Stabilizer(N,1);
> N1;
Permutation group N1 acting on a set of cardinality 15
Order = 4 = 2ˆ2

(2, 11)(3, 4)(5, 12)(7, 9)(10, 13)(14, 15)
(2, 5)(3, 13)(4, 10)(7, 14)(9, 15)(11, 12)

> NN<x,y>:=Group<x,y|xˆ5,yˆ3,(x*y*x)ˆ2>;
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> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
> ArrayP:=[Id(N): i in [1..60]];
> for i in [2..60] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
for|for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> for i in [1..60] do if ArrayP[i] eq N!(2, 11)(3, 4)(5, 12)
> (7, 9)(10, 13)(14,15) then print Sch[i]; end if; end for;
xˆ2 * y
> for i in [1..60] do if ArrayP[i] eq N!(2, 5)(3, 13)(4, 10)
> (7, 14)(9, 15)(11,12)then print Sch[i]; end if; end for;
x * yˆ-1 * xˆ-1 * y * x.

Lastly, we will make the following additions to complete the progenitor. Since we are

working with an involutory progenitor, the order of ts is 2, we will make this addition

to the progenitor. Also, we will make t ∼ t1 commute with the point stabilizers that

were recently found. Therefore the progenitor is given as:

N ∼= 2∗15 : A5
∼=< x, y, t|x5, y3, (xyx)2, t2, (t, x2y), (t, xy−1x−1yx) >.

2.3 First Order Relations

To achieve the ultimate goal of producing a finite homomorphic image, rela-

tions must be added to the control group. This process is referred to as factoring by

relations. Luckily, with the help of MAGMA, this can easily be done with the subse-

quent code:

> C:=Classes(N);
> Classes(N);
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Conjugacy Classes of group N
----------------------------
[1] Order 1 Length 1

Rep Id(N)

[2] Order 2 Length 15
Rep (1, 7)(3, 8)(5, 14)(6, 11)(10, 12)(13, 15)

[3] Order 3 Length 20
Rep (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)

[4] Order 5 Length 12
Rep (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)

[5] Order 5 Length 12
Rep (1, 10, 14, 9, 3)(2, 7, 6, 15, 12)(4, 11, 8, 5, 13)

> #C;
5
> for i in [2..5] do
for> i,Orbits(Centralizer(N,C[i][3]));
for> end for;
2 [

GSet{@ 2 @},
GSet{@ 4 @},
GSet{@ 9 @},
GSet{@ 1, 7, 10, 12 @},
GSet{@ 3, 8, 14, 5 @},
GSet{@ 6, 11, 15, 13 @}

]
3 [

GSet{@ 1, 4, 10 @},
GSet{@ 2, 5, 8 @},
GSet{@ 3, 7, 11 @},
GSet{@ 6, 9, 15 @},
GSet{@ 12, 14, 13 @}

]
4 [

GSet{@ 1, 9, 10, 3, 14 @},
GSet{@ 2, 15, 7, 12, 6 @},
GSet{@ 4, 5, 11, 13, 8 @}

]
5 [
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GSet{@ 1, 10, 14, 9, 3 @},
GSet{@ 2, 7, 6, 15, 12 @},
GSet{@ 4, 11, 8, 5, 13 @}

]
> for j in [2..5] do
for> C[j][3];
for> for i in [1..60] do
for|for> if ArrayP[i] eq C[j][3]
for|for|if> then Sch[i]; end if;
for|for> end for;
for> end for;
(1, 7)(3, 8)(5, 14)(6, 11)(10, 12)(13, 15)
x * y * x
(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)
y
(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
x
(1, 10, 14, 9, 3)(2, 7, 6, 15, 12)(4, 11, 8, 5, 13)
xˆ2.

Let us better analyze the information given within the following table, and

proceed by multiplying each relation by a t of each orbit from each class.

Table 2.1: Conjugacy Classes of N

Conjugacy Classes of N=Alt(5)

Class Representative of
the class

# of elements in
class

Orbits

C1 Identity 1 {1}{2}...{15}
C2 xyx=(1,7)(3,8)

(5,14)(6,11)
(10,12)(13,15)

15 {2}{4}{9}
{1, 7, 10, 12}
{3, 8, 14, 5}
{6, 11, 15, 13}

C3 y=(1,4,10)
(2,5,8)(3,7,11)
(6,9,15)(12,14,13)

20 {1, 4, 10}
{2, 5, 8, }
{3, 7, 11}
{6, 9, 15}
{12,14,13}

C4 x=(1,9,10,3,14)
(2,15,7,12,6)
(4,5,11,13,8)

12 {1, 9, 10, 3, 14}
{2, 15, 7, 12, 6}
{4, 5, 11, 13, 8}

C5 x2=(1,10,14,9,3)
(2,7,6,15,12)
(4,11,8,5,13)

12 {1, 10, 14, 9, 3}
{2, 7, 6, 15, 12}
{4, 11, 8, 5, 13}
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Since we are working with t1, in order to right multiply by ti (not 1), we simply

conjugate t1. Therefore, all of the first order relations are as listed, where the variable

r represents a power that the relation may be raised to.

Table 2.2: conjugacy Class of N and Relations

Relations of N=Alt(5)

Class Representative of
the class

Relations

C1 Identity

C2 xyx (xyxt)r,
(xyxty

xy)r

(xyxty)r (xyxtx)r

(xyxtx
3
)r

(xyxt(y
x)2)r

C3 y (yt)r, (yty
xy)r,

(ytx
3
)r, (yt(y

x)2)r,
(yt(xy)

3
)r

C4 x (xt)r, (xty
xy)r,

(xty)r

C5 x2 (x2t)r, (x2ty
xy)r,

(x2ty)r

From here, we will work with MAGMA, where we will research each power of

r and check if the relations produced a finite homomorphic image. When working in

this manner, it is ideal to not work with all of the relations, because it would take too

long and also use up too much memory. In such situations, we may limit the relations

we check in MAGMA to around twelve, though the individual ultimately decides the

limit. In the table above all relations are raised to a generic power r, but when checking

in the computer, we are bit more specific. Moving forward, we use a sub command of

MAGMA (called NANO) where it test each power of the relation to see if there are

finite groups, we run this in the background:

for r1, r2, r3, r4,r5, r6, r7, r8, r9, r10, r11, r12 in [0..10]
doG<x,y,t>:=Group<x,y,t|xˆ5, yˆ3, (x*y*x)ˆ2, tˆ2, (t,xˆ2*y),
(t,x*yˆ-1*xˆ-1*y*x), (x*y*x*t)ˆr1, (y*t*tˆ(x))ˆr2,
(y*t*tˆ(xˆ2))ˆr3, (x*y*x*tˆ(y))ˆr4, (x*y*x*tˆ(x))ˆr5,
(y*t*tˆ(y))ˆr6, (y*t*tˆ(xˆ3))ˆr7,
(x*y*x*tˆ(xˆ3))ˆr8, (xˆ2*t)ˆr9, (y*tˆ(xˆ3))ˆr10,
(x*t)ˆr11, (y*t)ˆr12>;
if #G gt 60 then
r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12,
#G;
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end if;
end for;

here, we may observe that each relations is being tested with numbers ranging from 1

to 10.

The table is listed in Chapter 6 (table 6.2), and it lists some of the finite

homomorphic imaged found by factoring by first order relations.

2.4 Famous Lemma

In addition to the progenitor that was built in the previous section, we will

continue by factoring the progenitor by additional relations, we will do so with the aid

of the Famous Lemma.

Our goal throughout this project is to produce finite homomorphic images,

but along with that, we also want our findings to be interesting. A task that can be bit

overwhelming, how can one know what relations are worthy of trying out? A method

that has proven to be resourceful is factoring by Famous Lemma relations, a process

created by Robert T. Curtis. As stated in his book [Cur 07]:

Lemma 3.3

N∩ < ti, tj >≤ CN (Nij)where Nij denotes the stabilizer in N of the

two points i and j.

Proof. If π ∈ Nand π = w(ti, tj), as word in the two symmetric

generators ti and tj , and if σ ∈ Nij , then

πσ = w(titj)
σ = w(tσi , t

σ
j ) = w(tiσ, tjσ) = w(ti, tj) = π,

and so π commutes with every element on Nij as required.

Such that for each two point stabilizer Nij , find its centralizer in N

and attempt to write elements of this centralizer as words in ti and

tj .�

As previously stated, the control group is :

N =< x, y, t|x5, y3, (xyx)2, t2, (t, x2y), (t, xy−1x−1yx) >.
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Now to produce the relations detailed in the Famous Lemma, we recreate the process

listed in the proof; meaning, we will stabilize the two points, t1 and t2, which will be

our two point stabilizer of N , and follow by computing the centralizer of the two point

stabilizer. Let us illustrate this with the control group N :

> N12:=Stabiliser(N,[1,2]);

> C12:=Centraliser(N,N12);

> C12;
Permutation group N acting on a set of cardinality 15
Order = 60 = 2ˆ2 * 3 * 5

(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)

> for i in [1..60] do if ArrayP[i] eq N!
for|if> (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
for|if> then print Sch[i]; end if; end for;
x

> for i in [1..60] do if ArrayP[i] eq N!
for|if> (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)
for|if> then print Sch[i]; end if; end for;
y

with the help of the Schreier System, we are able to translate the permutations that

were given as the centralizer of the two point stabilizer of N , providing x and y. With

the new Famous Lemma relations discovered above, x and y, there can be one of two

possibilities:

=

(titj)
k = g where k is even and fixes 1 and 2

(gti)
k = 1 where k is odd and g sends 1 to 2.

[Rot95]

For our example, we will add the two relations (x, t) and (y, t). It just so hap-

pens that in this particular example, these Famous Lemma relations were also produced

in the process of creating first order relations, and are already included in the end of

our progenitor, and are listed in the end of the previos section.
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Chapter 3

Double Coset Enumeration

3.1 Double Coset Enumeration of S6

A group G is made up of a union of double cosets and when performing a

double coset enumeration we are searching for all of the double cosets in G over a con-

trol group N . Where a double coset consists of single cosets and that will determine

the size of the double coset. In this section, we will perform double coset enumeration on

G =
2∗5 : S5

(x−1yxyt)8, (x2yx−1t)5, (x2yx2yxyt)8
∼= S6.

The control group is Symmetric Group 5 and the generators are x = (1, 2, 3, 4, 5) and

y = (1, 2) ; we will refer to t as t1 for this group. Let us compute the three listed

relations:

[x−1yxyt]8 = e (let π = x−1yxy)

[πt]8 = e

π8tπ
7
tπ

6
tπ

5
tπ

4
tπ

3
tπ

2
tπt = e

(1, 3, 2)t2t1t3t2t1t3t2t1 = e

(1, 3, 2)t2t1t3t2t1t3 = t1t2
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[x2yx−1t]5 = e (let π = x2yx−1)

[πt]5 = e

π5tπ
4
tπ

3
tπ

2
tπt = e

(1, 2, 3, 4)t1t4t3t2t1 = e

(1, 2, 3, 4)t1t4t3 = t1t2

[x2yx2yxyt]8 = e (let π = x2yx2yxy)

[πt]8 = e

π8tπ
7
tπ

6
tπ

5
tπ

4
tπ

3
tπ

2
tπt = e

(1, 3, 2)t2t1t3t2t1t3t2t1 = e

(1, 3, 2)t2t1t3t2t1t3 = t1t2.

Now we may continue to perform the double coset enumerations of G over N .

In order to express G as a union of double cosets, we will interpret it as NgN ,

where g is an element of G; such that G = NeN ∪Ng1N ∪Ng2N..., where g′is are words

in the t′is. Our objective is to find the number of single cosets contained in each double

coset [w] defined as [w] = {Nwn|n ∈ N}. We will know when we are done with our dou-

ble coset enumeration when the set of right cosets is closed under right multiplication,

meaning all of our potentially new double cosets are already recognized. We declare each

double coset [w] where Mwti will belong to one of the symmetric generators of ti from

each of the orbits of the coset stabiliser group; defined as N (w) = {n ∈ N |Nwn = Nw},
and where each w is a word of t′is on X = {1, 2, 3, 4, 5}.

N e N

We begin with the double coset NeN = {Nen|n ∈ N}, labeled [∗], and con-

tains one single coset, N . The coset stabilizer of N is the control group N and thus

has a single orbit of {1, 2, 3, 4, 5} of which we will perform right multiplication. Any
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element of the orbit can be the representative, we chose the orbit representative of 1.

This means that Net1 = Nt1N is a new double coset [1] and since there is 5 single coset

in the orbit of [∗], 5 single cosets will move forward to the coset [1].

N t1 N

For the double coset Nt1N we need to find the point stabilizer, N1, and the

coset stablising group N (1) to discern how many single cosets are in [1],

N (1) ≤< (2, 3), (3, 4, 5), (3, 5) >

≤ 24.

Thus, the order of the coset stabliser is 24. The number of single cosets is defined as
|N |
|N(1) , so the number of single cosets in N (1) = |N |

|N(1) = 120
24 = 5. And our index is

represented by the sum of single cosets in each distinct double coset, so far we only

have established the cosets [∗] and [1], 1 + 5 = 6. The total amount of single cosets is

characterized as G
N , so the entirety of the double coset enumeration we should have a

total of 720
120 = 6 single cosets. This will also be another clue to let us know that we have

completed the double coset enumeration; notice that we are technically done because

we have reached the limit. Carrying on, the orbits of [1] are {1}, {2, 3, 4, 5} and will pick

a coset representative from each of the orbits to determine if any double cosets Mt1ti

are new:

Mt1t1 = Me,∈ [∗] (1 will loop back to [*])

Mt1t2 ∈ [1].

Consequently, there are not any new double cosets, since the potentially new double

cosets, [1, 2] and [1, 1] either went back to [∗] or looped back to [1]. There were 4 sin-

gle cosets that looped back to [1]. We have completed the double cose enumeration of S6.
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Figure 3.1: Cayley Graph of S6

3.2 Double Coset Enumeration of PGL2(7)

We factor the progenitor 2∗7 : D14 by the relations (at)3 and (bta
3
). Let

G =
2∗7 : D14

(at)3, (bta3)
be a symmetric presentation of G given by

< a, b, t|a7, b2, (ab)2, t2, (t, ab), (at)3, (bta3)6 > where N∼= D14 = < a, b > and

a = (1234567) and b = (17)(26)(35) and t = t7.

We will use manual double coset enumeration to find the index of N in G . By

definition we may take G and express it as a union of double cosets NgN , where g is

an element of G. So G = NeN ∪Ng1N ∪Ng2N ∪ ..., where gi’s are words in the ti’s.

Our goal will be to complete a double coset enumeration of G over N in order

to find the index of N in G. All distinct double cosets may be found by the following

definition [w], where [w] = {Nwn|n ∈ N} and from there on we may see how many

single cosets are contained in each double coset. This procedure will be repeated until

all potentially new double cosets have already been accounted for; and when the set

of right cosets is closed under right-multiplication by ti’s. We symbolize, for each [w],

the double coset to which Nwti belongs for one symmetric generator ti from each orbit

of the coset stabilser N (w) = {n ∈ N : Nwn = Nw}, where w is a word of ti’s on

{1, 2, 3, 4, 5, 6, 7} = X.

To begin with the double coset, we will start off with the identity; NeN , which

we denote [∗]. This double coset consists of the single coset N . The orbits of N on X

are {1,2,3,4,5,6,7}. Next, we have chosen t7 as our symmetric generator from the orbit

{1,2,3,4,5,6,7} and find where Nt7 belongs. We find that Nt7 belongs to Nt7N and is
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a new double coset. We denote Nt7N by [7].

We will continue by finding how many single cosets [7] contains, but in order to

do so we must find the number of elements in the coset stabilizing group of [7], denoted

N (7). This is essetial because the number of single cosets in [7] is equal to |N |
|N(7)| . We

have:

N (7) ≥ | < e, (16)(25)(34) > |

≥ 2

Thus, the number of single cosets in Nt7N = |N |
|N(7)| = 14

2 = 7. Now our index is the

number of distinct single cosets in each distinct double coset, such as [*] and [7]. As of

now, we have 1 + 7 = 8 single cosets, so our index is 8 as of now. We should also note

that the orbits of [7] are {7}, {1, 6}, {2, 5}, and {3, 4}.
We have computed the number of single cosets in this level of double cosets,

so we continue to the next level by working with the orbits of [7]. The orbits of N (7)

on X are {7}, {1, 6}, {2, 5}, and {3, 4}, and we take t7, t1, t2, and t3 from each orbit

respectively. From the orbit {7} we get Nt7t7, which belongs to the double coset [∗].
The representative t1 from {1, 6} advances to the potentially new double coset Nt7t1

which we denote [71]. The representative t2 from {2, 5} advances to the potentially new

double coset Nt7t2 which we denote [72]. The representative t3 from {3, 4} advances to

the potentially new double coset Nt7t3 which we denote [73].

However, consider the following relation:

t7t1 = (7362514)[t7]
(7246135).

Hence in [7], the orbit representative from {7} advances back to [∗], the orbit

representative from {1, 6} advances back to [7], the representative from {2, 5} goes to

[72], and the representative from {3, 4} goes to [73]. So the only new, distinct double

cosets are [72] and [73].

Consider the following relations:

t7t2 = t5t3. Hence [t7t2]
(14)(23)(57) = t5t3 ⇒ [(14)(23)(57)] ∈ N (72).

t7t3 = t2t6. Hence [t7t3]
(27)(36)(45) = t2t6 ⇒ [(27)(36)(45)] ∈ N (73).
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Now, computing N (72) in N :

N (72) ≥< N72, (14)(23)(57) >

≥< Id(G), (14)(23)(57) >

≥ 2

Computing N (73) in N :

N (73) ≥< N73, (27)(36)(45) >

≥< Id(G), (27)(36)(45) >

≥ 2

The number of single cosets in Nt7t2N = |N |
|N(72)| = 14

2 = 7. The number of

single cosets in Nt7t3N = |N |
|N(73)| = 14

2 = 7.

Hence our index is increased to 8 + 7 + 7 = 22.

We now explore any potentially new double cosets coming from representatives

from the orbits of N (02) on X and N (03) on X.

The orbits of N (72) on X are {7}, {1}, {2}, {3}, {4}, {5}, and {6}. The

representative from the orbit {2} advances to [7]. The other representatives will be the

potentially new double cosets [721], [723], [724], [725], [726], and [727].

However, consider the following relations:

t7t2t7 = (7362514)[t7t2]
(16)(25)(34)

t7t2t1 = (7246135)[t7t3]
(76)(15)(24)

t7t2t3 = (7654321)[t7]
(7531642)

t7t2t4 = (7246135)[t7t3]
(71)(62)(53)

t7t2t5 = (7246135)[t7t2]
(73)(12)(62)

We now know that the only distict double coset is [726] which only contains

one element.

The orbits of N (73) on X are {7}, {1}, {2}, {3}, {4}, {5}, and {6}. The

representative from the orbit {3} advances to [7]. The other representatives will be the

potentially new double cosets [731], [732], [734], [735], [736], and [737].
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However, we may consider the following relations:

t7t3t7 = (7123456)[t7t3]
(7531642)

t7t3t2 = (7654321)[t7t3]
(7246135)

t7t3t4 = (7246135)[t7t2]
(71)(62)(53)

t7t3t5 = (7246135)[t7t2]
(76)(15)(24)

t7t3t6 = (7531642)[t7]
(7246135)

Similarly, the only distict double coset is [731].

By considering the next relations, we may conclude that there will not be

another level of double cosets. Thus finishing our double coset enumeration.

t7t2t6t7 = (7654321)[t7t2]
(7123456)

t7t2t6t1 = (7531642)[t7t2]
(7246135)

t7t2t6t2 = (7362514)[t7t2]
(71)(62)(53)

t7t2t6t3 = (7246135)[t7t2]
(72)(63)(54)

t7t2t6t4 = (7123456)[t7t2]
(73)(12)(64)

t7t2t6t5 = (e)[t7t2]
(74)(13)(65)

t7t3t1t7 = (7123456)[t7t3]
(71)(62)(53)

t7t3t1t2 = (7246135)[t7t3]
(73)(12)(64)

t7t3t1t3 = (7123456)[t7t3]
(7246135)

t7t3t1t4 = (7531642)[t7t3]
(7362514)

t7t3t1t5 = (e)[t7t3]
(76)(15)(24)

t7t3t1t6 = (7654321)[t7t3]
(7531642)

3.2.1 Proof G ∼= PGL2(7)

We factor the progenitor 2∗7 : D14 by the relations (xt)3 and (ytx
3
). Let

G ∼= 2∗7:D14

(xt)3,(ytx3 )6
∼= PGL2(7) be a symmetric presentation of G given by

< x, y, t|x7, y2, (xy)2, t2, (t, yb), (xt)3, (ytx
3
)6 > where N∼= D14 = < x, y > and

x = (1, 2, 3, 4, 5, 6, 7) and y = (1, 7)(2, 6)(3, 5).

Definition Generators of PSL(2,q) (where p is a finite field of order p2 where

p is prime). Note, we will refer to this as L2(q)
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Figure 3.2: Cayley Graph of PGL2(7)

In L2(7) our field is 7,

F7 = Z7 = 0, 1, 2, 3, 4, 5, 6

F7 ∪∞ = 0, 1, 2, 3, 4, 5, 6 ∪∞.
The non-zero squares in F7 are 12, 22, 32, 42, 52, 62 in mod7 = {1, 2, 4}.
The group is generated by, L(2, 7) = x → ax+b

cx+d where x ∈ F7 ∪ ∞, a, b, c, d ∈ F7 and

ad− bc = 1 or equicantly a non-zero square.

Permutations of our presentation of L2(7) will be α, β, and γ, which are defined and

listed below,

α : x→ x+ 1 = (∞)(0, 1, 2, 3, 4, 5, 6)

β : x→ 4x = (∞)(0)(1, 4, 2)(3, 5, 6).

γ : x→ −1
x = (0,∞)(1, 6)(2, 3)(4, 5),

now since we are working with PGL2(7), which is L2(7) : 2, we have an extra generator

which is the automorphism,

aut : x → −6
x = (7,∞)(2, 4)(5, 3). With the help of MAGMA we can find the homo-

morphic projection of t
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> S:=Sym(7);
> xx:=S!(1,2,3,4,5,6,7);
> yy:=S!(1,7)(2,6)(3,5);
> N:=sub<S|xx,yy>;
> #N;
14
> G<x,y,t>:=Group<x,y,t|xˆ7,yˆ2,(x*y)ˆ2,tˆ2,(t,x*y),(x*t)ˆ3,
(y*tˆ(xˆ3))ˆ6>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> CompositionFactors(G1);

G
| Cyclic(2)

*
| A(1, 7) = L(2, 7)
1

> S:=Sym(8);
> alpha:=S!(7,1,2,3,4,5,6);
> beta:=S!(1,4,2)(3,5,6);
> gamma:=S!(7,8)(1,6)(2,3)(4,5);
> aut:=S!(7,8)(2,4)(5,3);
> P:=sub<S|alpha, beta, gamma, aut>;
> IsIsomorphic(G1, P);
true Homomorphism of GrpPerm: G1, Degree 24,
Order 2ˆ4 * 3 * 7 into GrpPerm: P,

Degree 8, Order 2ˆ4 * 3 * 7 induced by
(2, 3, 5, 7, 10, 6, 4)(8, 9, 12, 18, 22, 20, 13)
(11, 15, 19, 14, 16, 21, 17)

|--> (2, 6, 4, 8, 5, 3, 7)

(2, 3)(4, 5)(6, 7)(8, 12)(11, 16)(13, 18)(14, 15)(17, 21)
(20, 22)

|--> (2, 4)(3, 5)(7, 8)

(1, 2)(3, 4)(5, 8)(6, 9)(7, 11)(10, 14)(12, 19)(13, 15)
(16, 17)(18, 20)(21,

23)(22, 24)
|--> (1, 5)(2, 7)(3, 8)(4, 6).

This allows us know that homorphisms of φ(x), φ(y), and φ(t) are (2, 6, 4, 8, 5, 3, 7),

(2, 4)(3, 5)(7, 8) and (1, 5)(2, 7)(3, 8)(4, 6) respectively. Now we will prove that G is iso-

morphic to L2(7) by constructing a homomorphism φ from the progenitor 2∗7 : D14 to

L2(7). Let
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φ(x) ≡ 5x−1
x−4 = (2, 6, 4,∞, 5, 3, 0)

φ(y) ≡ −6
x−7 = (2, 4)(3, 5)(0,∞)

and we see that |x| = 7,|y| = 2, and |xy| = 2, thus N =< x, y >∼= D14.

We now let φ(t0) ≡ 3x−6
x−3 = (1, 5)(2, 0)(3,∞)(4, 6).

This is how we resulted in the equations that makes φ(x) possible.

With the help of MAGMA, we will find out that φ(x) = (2, 6, 4, 8, 5, 3, 7)(note that 8 is

∞ and 7 is 0); this means that that ∞ goes to 5. We will substitute these values into

the formula ax+b
cx+d

a(∞) + b

c(∞) + d
= 5

=
a

c
= 5

(3.1)

and 3 goes to 0

a(3) + b

c(3) + d
= 0

= 3a+ b = 0

−3a = b

(3.2)

4 goes to ∞

a(4) + b

c(4) + d
=∞

= 4c+ d = 0

−4c = d

(3.3)

2 goes to 6

a(2) + b

c(2) + d
= 6

2a+ b = 12c+ 6d

substitute the following findings, a = 5c and d = −4c

2(5c) + b = 12c+ 6(−4c)

b = −22c

(3.4)
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finally to form φ(x)

a(x) + b

c(4x) + d
=

(5c)x+ (−22c)

cx+ (−4c)

=
5x− 22

x− 4

=
5x− 1

x− 4

(3.5)

Thus, φ(x) ≡ 5x−1
x−4 = (2, 6, 4,∞, 5, 3, 0). We performed similar algebra to find φ(y) and

φ(t).

We now need to show that |tN0 | = 7

φ(t) = φ(t0) = (1, 5)(2, 0)(3,∞)(4, 6)

φ(tx0) = φ(t1) = (1, 3)(2,∞))(4, 0)(5, 6)

φ(tx
2

0 ) = φ(t2) = (1,∞))(2, 6)(3, 4)(5, 0)

φ(tx
3

0 ) = φ(t3) = (1, 2)(3, 5)(4, 6)(0,∞))

φ(tx
4

0 ) = φ(t4) = (1, 6)(2, 5)(3,∞))(4, 0)

φ(tx
5

0 ) = φ(t5) = (1, 4)(2,∞))(3, 6)(5, 0)

φ(tx
6

0 ) = φ(t6) = (1, 0)(2, 6)(3, 5)(4,∞))

N permutes the six images of t0, by conjugation L2(7) is given by,

φ(x) : (t1, t2, t3, t4, t5, t6, t0) and φ(y) : (t1, t0)(t2, t6)(t3, t5),

thus φ(2∗7 : D14) ∼= PGL2(7).

Now the relations given by (xt)3 = 1 and (ytx
3
)6=1 where their order are 3

and 6 respectively match the order of the images. Thus, the order of |φ(x)φ(t)| = 3 and

|φ(y)φ(t)φ(x)
3 | = 6. Therefore, PGL2(7) is an image of G, so the |G| ≥ |PGL2(7)| but

|G| ≤ 336 = |PGL2(7)| and so the equality holds and G ∼= PGL2(7).

3.3 Double Coset Enumeration of L2(31) Over D15

Let G =
2∗15 : D15

(zt)4, (x2z−1t)10, (x2zt)3
∼= 2•L2(31), where the group G = 2∗15 : D15

and is factored by the relations (zt)4, (x2z−1t)10, (x2zt)3; our goal will be to perform

a double coset enumeration on G factored by the relators along with the center Z(G).

In order to find the center we will refer to MAGMA to aid in the search, the following

code is a good starting point:
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> G<x,y,z,t>:=Group<x,y,z,t|yˆ2,zˆ3,(xˆ-1 * y)ˆ2,(x, z),
> (y * zˆ-1)ˆ2, xˆ-5,tˆ2, (t,y * x * z),(z*t)ˆ4,
> (xˆ2 * zˆ-1*t)ˆ10,(xˆ2 * z*t)ˆ3>;
> Index(G,sub<G|x,y,z>);
992
> f,G1,k:=CosetAction(G,sub<G|x,y,z>);
> CompositionFactors(G1);

G
| A(1, 31) = L(2, 31)

*
| Cyclic(2)
1

> Center(G1);
Permutation group acting on a set of cardinality 992
Order = 2
> C:=Center(G1);
> Order(C.1);
2
> W:=WordGroup(G1);
> rho:=InverseWordMap(G1);
> C1:=C.1;
> C1@rho;
function(W)

w5 := W.2 * W.1; w6 := w5 * W.4; w7 := w6 * W.3; w8 := w7 * W.4;
w3 := W.3ˆ-1; w9 := w8 * w3; w10 := w9 * W.4; return w10;

end function
> A:=function(W)
function> w5 := W.2 * W.1; w6 := w5 * W.4; w7 := w6 * W.3;
function> w8 := w7 * W.4; w3 := W.3ˆ-1; w9 := w8 * w3;
function> w10 := w9 * W.4; return w10;
function> end function;
> A(G);
y * x * t * z * t * zˆ-1 * t
> G<x,y,z,t>:=Group<x,y,z,t|yˆ2,zˆ3,(xˆ-1 * y)ˆ2,(x, z),
> (y * zˆ-1)ˆ2, xˆ-5,tˆ2, (t,y * x * z),(z*t)ˆ4,(xˆ2 * zˆ-1*t)ˆ10,
> (xˆ2 * z*t)ˆ3,y * x * t * z * t * zˆ-1 * t>;
>
> f,G1,k:=CosetAction(G,sub<G|x,y,z>);
> CompositionFactors(G1);

G
| A(1, 31) = L(2, 31)
1

> #DoubleCosets(G,sub<G|x,y,z>,sub<G|x,y,z>);
25.
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In the code above, we are curious to see if G1 has a center. Luckily it does. We continue

by translating the permutations into words, which produce the center

Z(G) =< yxtztz−1t >. Lastly the words were added to the end of the progenitor. Now

we can continue working with L2(31) and conveniently enough the number of double

cosets was reduced to 25.

We will advance with G =
2∗15 : D15

(zt)4, (x2z−1t)10, (x2zt)3, yxtztz−1t
∼= L2(31) and

perform the double coset enumeration. The control group is D15

with x = (1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11),

y = (2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14),

z = (1, 3, 5)(2, 7, 8)(4, 9, 11)(6, 12, 13)(10, 14, 15), and t ∼ t15. Let us compute our three

listed relations.

[zt]4 = e

z4tz
3
tz

2
tzt = e

(1, 3, 5)(2, 7, 8)(4, 9, 11)(6, 12, 13)(10, 14, 15)t15t14t10t15 = e

(1, 3, 5)(2, 7, 8)(4, 9, 11)(6, 12, 13)(10, 14, 15)t15t14 = t15t10.

For the relation (x2zt)3, to make our work easier,

let π = x2z−1 = (1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11), such that:

[x2x−1t]10 = e

[πt]10 = e

π10tπ
9
tπ

8
tπ

7
tπ

6
tπ

5
tπ

4
tπ

3
tπ

2
tπt = e

et8t4t12t5t10t7t11t6t3t15 = e

t8t4t12t5t10t7t11t6 = t15t3.
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Same as above, for the relation (x2zt)3,

let π = x2z = (1, 12, 11, 2, 14, 5, 6, 9, 8, 10, 3, 13, 4, 7, 15):

(x2zt)3 = e

π3 = e

π3tπ
2
tπt = e

(1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11)t12t1t15 = e

(1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11)t12 = t15t1

Now we may continue to perform the double coset enumerations of G over N .

In order to express G as a union of double cosets, we will interpret it as NgN , where g is

an element of G; such that G = NeN ∪Ng1N ∪Ng2N..., where g′is are words in the t′is.

Our objective is to find the number of single cosets contained in each double coset [w]

defined as [w] = {Nwn|n ∈ N}. We will know when we are done with our double coset

enumeration when the set of right cosets is closed under right multiplication, meaning

all of our potentially new double cosets are already recognized. We declare each double

coset [w] where Mwti will belong to one of the symmetric generators of ti from each of

the orbits of the coset stabiliser group; defined as N (w) = {n ∈ N |Nwn = Nw}, and

where each w is a word of t′is on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

N e N

We begin with the double coset NeN = {Nen|n ∈ N}, labeled [∗], and con-

tains one single coset, N . The coset stabilizer of N is the control group N and thus

has a single orbit of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} of which we will perform

right multiplication. Any element of the orbit can be the representative, we choose the

orbit representative of 1. This means that Net15 = Nt15N is a new double coset [0]

and since there is 15 single cosets in the orbit of [∗], 15 single cosets will move forward

to the coset [0]. The reason being, that in this particular group, I chose to stabilize t15,

when bulding my progenitor, as a result, we will let t ∼ t15.
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Nt0N

The second double coset will be represented as [0] . The coset stabilizing

group will be generated by N (0) =< (1, 7)(2, 3)(4, 12)(5, 8)(6, 9)(10, 14)(11, 13) > such

that
|N |
|N (0)|

=
30

2
= 15, meaning that there are 15 single cosets in the double coset [0].

The orbits of N (0) are {15}, {1, 7}, {2, 3}, {4, 12}, {5, 8}, {6, 9}, {10, 4} and {11, 13}. We

will then pick a representative from each orbit and right multiply, Nt0, consider the

following relations:

t0t0 ∈ [0] (goes back to [∗]),

t0t1 = x[t0]
y (loops back to [0]),

t0t2 ∈ [0, 2],

t0t4 ∈ [0, 4],

t0t5 = yx−1z−1[t0t2]
yx,

t0t6 ∈ [0, 6],

t0t10 = yxz−1[t0]
yxz (loops back to [0]),

t0t11 ∈ [0, 11].

Thus the new double cosets are [0, 2], [0, 4], [0, 6] and [0, 11], where four single cosets

continue onto [0, 2], 2 single cosets continue onto [0, 4], [0, 6] and [0, 11] each. Moving

forward, we will continue by looking into the double coset [0, 2]

Nt0t2N

The double coset Nt0t2 is labeled [0, 2]. The coset stabilizing group will

be generated by N (0,2) =< (2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14) > such that
|N |
|N (0,2)|

=
30

2
= 15, meaning that there are 15 single cosets in the double coset [0, 2].

The orbits of N (0,2) are {1}, {2, 4}, {3, 5}, {6, 10}, {7, 11}, {8, 9}, {12, 15} and {13, 14}.
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We will then pick a representative from each orbit and right multiply, Nt0t2, consider

the following relations:

t0t2t1 ∈ [0, 2, 1],

t0t2t4 = x2z−1[t0]
y (goes back to [0]),

t0t2t3 ∈ [0, 2, 3],

t0t2t6 ∈ [0, 2, 6],

t0t2t7 = yzx−2[t0]
yx,

t0t2t8 = x−1z−1[t0t2]
yx2z (loops back to [0,2]),

t0t2t12 = yx−1[t0t6]
x−2

,

t0t2t14 = x[t0t11]
x.

Thus the new double cosets are [0, 2, 1], [0, 2, 3], [0, 2, 6] where 2 single cosets continued

onto each of the new double cosets, and 2 single cosets continue onto [0, 6] and [0, 11],

each. Moving forward, we will continue by looking into the double coset [0, 4]

Nt0t4N

The double coset Nt0t4 is labeled [0, 4]. The coset stabilizing group will be gen-

erated by N (0,4) =< (1, 8)(2, 5)(3, 7)(4, 13)(6, 11)(9, 12)(10, 15) > such that
|N |
|N (0,4)|

=

30

2
= 15, meaning that there are 15 single cosets in the double coset [0, 4]. The or-

bits of N (0,4) are {14}, {1, 8}, {2, 5}, {3, 7}, {4, 13}, {6, 11}, {9, 12} and {10, 15}. We will

then pick a representative from each orbit and right multiply it to Nt0t4 consider the

following relations:
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t0t4t14 = yx−2[t0t4t2]
x,

t0t4t1 ∈ [0, 4, 1],

t0t4t2 ∈ [0, 4, 2],

t0t4t3 = x2[t0t11]
zx−1

,

t0t4t4 = [0] (goes back to [0]),

t0t4t6 = yxz−1[t0t11]
x−2

,

t0t4t9 = yzx−2[t0t6]
x2 ,

t0t4t10 ∈ [0, 4, 10].

Thus the new double cosets are [0, 4, 2], [0, 4, 1], [0, 4, 10] where 2 single cosets continued

to [0, 4, 1] and [0, 4, 10], and 3 continue to [0, 4, 2]. Also, 4 single cosets move forward to

[0, 11] and 2 go back to [0].

We will continue by looking into the double coset [0, 6]

Nt0t6N

The double coset Nt0t6 is labeled [0, 6]. The coset stabilizing group will be gen-

erated by N (0,6) =< Id(N) > such that
|N |
|N (0,6)|

=
30

1
= 30, meaning that there are 30

single cosets in the double coset [0, 6]. The orbits ofN (0,6) are {1}, {2}, {3}, {4}, {5}, {6},
{7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will then pick a representative

from each orbit and right multiply it to Nt0t6, consider the following relations:
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t0t6t1 = yxz[t0t4t1]
yx−2z−1

,

t0t6t2 ∈ [0, 6, 2],

t0t6t3 = z−1[t0t4t1]
yzx−2

,

t0t6t4 = xz−1[t0t2t6]
x−1z−1

,

t0t6t5 = x−1[t0t6]
yz,

t0t6t6 = t0 (goes back to [0]),

t0t6t7 ∈ [0, 6, 7],

t0t6t8 = yxz−1[t0t2t1]
zx−2

,

t0t6t9 = yx−2[t0t2]
x2 ,

t0t6t10 ∈ [0, 6, 10],

t0t6t11 = zx−1[t0t11]
x2 ,

t0t6t12 = yx2z[t0t4]
yx−1z−1

,

t0t6t13 = yx−1z−1[t0t11]
zx−2

,

t0t6t14 = x−2z−1[t0t2t1]
x2z−1

,

t0t6t15 ∈ [0, 6, 0].

Thus the new double cosets are [0, 6, 2], [0, 6, 7], [0, 6, 10] and [0, 6, 0]. Also, 1 single

coset continue to [0, 2, 6], [0, 6], [0, 2] and [0, 4] each, and 2 continue to [0, 4, 1], [0, 2, 1]

and [0, 11] each. And one single coset goes back to [0]. We will continue by looking into

the double coset [0, 11]

Nt0t11N

The double coset Nt0t11 is labeled [0, 11]. The coset stabilizing group will be

generated by N (0,11) =< Id(N) > such that
|N |

|N (0,11)|
=

30

1
= 30, meaning that there are

30 single cosets in the double coset [0, 11]. The orbits ofN (0,11) are {1}, {2}, {3}, {4}, {5},
{6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will then pick a represen-
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tative from each orbit and right multiply it to Nt0t11, consider the following relations:

t0t11t1 = z−1[t0t2t3]
yx−2

,

t0t11t2 = x−2[t0t4]
xz−1

,

t0t11t3 = z−1[t0t6t2]
x2 ,

t0t11t4 = yx−2z−1[t0t4]
yx−2z−1

,

t0t11t5 ∈ [0, 11, 5],

t0t11t6 = yx−2z−1[t0t2t6]
z,

t0t11t7 = yx−1z−1[t0t4t2]
yx−1z−1

,

t0t11t8 = yx−1z−1[t0t4t1]
yx,

t0t11t9 = yx−2[t0t6]
x2z−1

,

t0t11t10 ∈ [0, 11, 10],

t0t11t11[t0t11t11] (goes back to [0]),

t0t11t12 = xz−1[t0t2]
yx−1

,

t0t11t13 = xz−1[t0t6]
x−2

,

t0t11t14 = x−1[t0t4t10]
x2z−1

,

t0t11t15 ∈ [0, 11, 15].

As we can see, one single coset continued onto the new double cosets, [0, 11, 5], [0, 11, 10],

and [0, 11, 0], each. Also, 1 single coset continue to [0, 2, 3] , [0, 6, 2], [0, 2, 6], [0, 4, 2],

[0, 4, 1], [0, 4, 10] and [0, 2], and 2 continue to [0, 4] and [0, 6]. And one single coset goes

back to [0]. Moving forward, we will continue by looking into the double coset [0, 2, 1]

Nt0t2t1N

The double coset Nt0t2t1 is labeled [0, 2, 1]. The coset stabilizing group will

be generated by N (0,2,1) =< (2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14) > such that
|N |

|N (0,2,1)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 2, 1]. The orbits of N (0,2,1) are {1}, {2, 4}, {3, 5}, {6, 10}, {7, 11}, {8, 9}, {12, 15} and
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{13, 14}.
We will then pick a representative from each orbit and right multiply it to

Nt0t2t1, consider the following relations:

t0t2t1t1 = [t0t2] (goes back to [0,2]),

t0t2t1t2 = yz[t0t6t0]
yzx−1

,

t0t2t1t3 = yz[t0t2t3]
yz,

t0t2t1t6 = zx−1[t0t6t2]
yxz−1

,

t0t2t1t7 = yx2[t0t6t10]
x,

t0t2t1t8 = x2z[t0t6]
z−2

,

t0t2t1t12 = yz[t0t6]
yx−2

,

t0t2t1t13 = x−1z−1[t0t6t7]
x.

As a result, one single coset goes back to [0, 2]. While two single cosets advance to each

of the following double cosets: [0, 6, 15], [0, 2, 3], [0, 6, 2], [0, 6, 10], [0, 6, 7], and [0, 6].

Nt0t2t3N

The double coset Nt0t2t3 is labeled [0, 2, 3]. The coset stabilizing group will

be generated by N (0,2,3) =< Id(G) > such that
|N |

|N (0,2,3)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 2, 3]. The orbits of N (0,2,3) are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will

then pick a representative from each orbit and right multiply it to Nt0t2t3, consider the

following relations:
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t0t2t3t1 = yx−2z−1[t0t2t1]
z,

t0t2t3t2 = z[t0t6t0]
yzx−2

,

t0t2t3t3 = [t0t2] (goes back to [0,2]),

t0t2t3t4 ∈ [0, 2, 3, 4],

t0t2t3t5 = yzx−2[t0t2t3]
e,

t0t2t3t6 = zx−1[t0t11t5]
zx−1

,

t0t2t3t7 ∈ [0, 2, 3, 7],

t0t2t3t8 = x−1z−1[t0t11t0]
yx2 ,

t0t2t3t9 = yx2z[t0t2t3t7]
xz,

t0t2t3t10 = z−1[t0t11]
yx−2

,

t0t2t3t11 = zx−2[t0t6t7]
yxz,

t0t2t3t12 = yx2z−1[t0t6t7]
yz,

t0t2t3t13 = x−2z−1[t0t2t6]
yx,

t0t2t3t14 = yxz−1[t0t11t5]
zx−2

,

t0t2t3t15 = yxz−1[t0t6t2]
z−1

.

Thus, one single coset goes back to [0, 2] and one loops back to [0, 2, 3]. While two sin-

gle cosets advance to the double cosets [0, 6, 15], [0, 2, 3], [0, 6, 2], [0, 6, 10], and one single

coset advance to the double cosets [0, 2, 1], [0, 6, 0], [0, 11, 0], [0, 11], [0, 2, 6] and [0, 6, 2].

The new double cosets are [0, 2, 3, 4] and [0, 2, 3, 7], and one single coset continued onto

each.

Nt0t2t6N

The double coset Nt0t2t6 is labeled [0, 2, 6]. The coset stabilizing group will

be generated by N (0,2,6) =< (1, 13)(2, 8)(3, 12)(4, 15)(5, 6)(9, 14)(10, 11) > such that
|N |

|N (0,2,6)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset
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[0, 2, 6]. The orbits of N (0,2,6) are {7}, {1, 13}, {2, 8}, {3, 12}, {4, 15}, {5, 6}, {9, 14} and

{10, 11}. We will then pick a representative from each orbit and right multiply it to

Nt0t2t6, consider the following relations:

t0t2t6t1 = yx2z−1[t0t11]
yx2

t0t2t6t2 = e[t0t2t3t4]
yxz−1

t0t2t6t3 = zx−1[t0t6]
xz

t0t2t6t4 = yx−1[t0t11t5]
x−1

t0t2t6t6 = [t0t2] (goes back to [0,2]),

t0t2t6t7 ∈ [0, 2, 6, 7],

t0t2t6t9 = x−2z−1[t0t2t3]
yx

t0t2t6t10 = zx−2[t0t6t7]
z.

Resulting in two single cosets goes back to [0, 2], there is one new double coset [0, 2, 6, 7].

While two single cosets advance to the double cosets [0, 2, 3, 4], [0, 6], [0, 6, 2], [0, 11, 5], [0, 2, 3].

Nt0t4t1N

The double coset Nt0t4t1 is labeled [0, 4, 1]. The coset stabilizing group will

be generated by N (0,4,1) =< Id(G) > such that
|N |

|N (0,4,1)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 4, 1]. The orbits of N (0,4,1) are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will

then pick a representative from each orbit and right multiply it to Nt0t4t1, consider the
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following relations:

t0t4t1t1 = [t0t4] (goes back to [0,4]),

t0t4t1t2 = yx−2z−1[t0t2t6]
yxz−1

,

t0t4t1t3 = yzx−2[t0t11]
yx,

t0t4t1t4 = yx[t0t4t10]
yxz,

t0t4t1t5 = yx2z−1[t0t4t2]
x−1

,

t0t4t1t6 = yxz[t0t4t2t3]
zx−1

,

t0t4t1t7 = yx−1[t0t6t0]
yx2z−1

,

t0t4t1t8 = x−1z−1[t0t6t10]
yx2z,

t0t4t1t9 ∈ [0, 4, 1, 9],

t0t4t1t10 = z−1[t0t6]
yzx−2

,

t0t4t1t11 ∈ [0, 4, 1, 11],

t0t4t1t12 = x−1[t0t4t10]
yx2z−1

,

t0t4t1t13 = yzx−1[t0t11t10]
yx2 ,

t0t4t1t14 = xz−1[t0t4t1]
yxz−1

,

t0t4t1t15 = y[t0t6]
yx−2z−1

.

Thus we have two new double cosets [0, 4, 1, 9] and [0, 4, 1, 11] each with one single coset

continuing to it. There is also one single coset going back to the double coset [0, 4]

while one loops back to [0, 4, 1]. Also, one single coset moves forward to the double

cosets [0, 2, 6, 7], [0, 11], [0, 4, 2], [0, 4, 2, 3], [0, 6, 0], [0, 6, 10], and [0, 11, 10], while two sin-

gle coset continue to [0, 6] and [0, 4, 10]. Next, we will look into the double cosetNt0t4t10.

Nt0t4t10N

The double coset Nt0t4t10 is labeled [0, 4, 10]. The coset stabilizing group

will be generated by N (0,4,10) =< Id(G) > such that
|N |

|N (0,4,10)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 4, 10]. The orbits of N (0,4,10) are
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{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will

then pick a representative from each orbit and right multiply it to Nt0t4t10, consider

the following relations:

t0t4t10t1 = zx−1[t0t11t10]
yz−1

,

t0t4t10t2 = yxz−1[t0t11t0]
yzx−1

,

t0t4t10t3 = x−1[t0t4t1]
yx2z−1

,

t0t4t10t4 = yx−1z−1[t0t2t3t7]
yx,

t0t4t10t5 = xz−1[t0t4t2t3]
yx2 ,

t0t4t10t6 = x−2z−1[t0t4t1t9]
x−2

,

t0t4t10t7 = yzx−2[t0t11t10]
x2z,

t0t4t10t8 = x[t0t11]
zx−2

,

t0t4t10t9 = e[t0t11t5]
x2z,

t0t4t10t10 = [t0t4] (goes back to [0,4]),

t0t4t10t11 = x−2[t0t6t0]
z−1

,

t0t4t10t12 = yxz−1[t0t4t1]
yxz,

t0t4t10t13 = zx−2[t0t4t1t11]
x−2z−1

,

t0t4t10t14 = zx−2[t0t4t2]
yz,

t0t4t10t15 = yx−2z−1[t0t4t10]
e.

Moving forward, we see that there is one single coset going back to the double coset [0, 4]

while one loops back to [0, 4, 10]. Also, one single coset moves forward to the double

cosets [0, 11, 0],

[0, 2, 3, 7], [0, 4, 2, 3], [0, 4, 1, 9], [0, 11], [0, 11, 5], [0, 6, 0], [0, 4, 1, 11] and [0, 4, 2], while two

single cosets continue to [0, 11, 10]. Next, we will look into the double coset Nt0t6t2.

Nt0t6t2N

The double coset Nt0t6t2 is labeled [0, 6, 2]. The coset stabilizing group will
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be generated by N (0,6,2) =< (1, 3)(2, 9)(4, 7)(6, 14)(8, 11)(10, 12)(13, 15) > such that
|N |

|N (0,6,2)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 6, 2]. The orbits of N (0,6,2) are {5}, {1, 3}, {2, 9}, {4, 7}, {6, 14}, {8, 11}, {13, 15} and

{10, 12}. We will then pick a representative from each orbit and right multiply it to

Nt0t6t2, consider the following relations:

t0t6t2t1 = yx−2[t0t2t3t7]
yx−1

,

t0t6t2t2 = [t0t6] ( goes back to [0,6]),

t0t6t2t4 = yx−2[t0t6t7]
x−2

,

t0t6t2t5 = xz[t0t11t10]
x−1

,

t0t6t2t6 = e[t0t11]
yx2z,

t0t6t2t8 = x−2z−1[t0t2t1]
yx−1z−1

,

t0t6t2t10 = yxz[t0t2t3]
z,

t0t6t2t13 = yx−1z−1[t0t11t5]
x2z.

Hence, there is two single cosets going back to the double coset [0, 6] Also, one single

coset moves forward to the double coset [0, 11, 10], while two single cosets continue to

[0, 11, 5], [0, 2, 3, 7], [0, 6, 7], [0, 11], [0, 2, 1], and [0, 2, 3]. Next, we will look into the double

coset Nt0t6t7.

Nt0t6t7N

The double coset Nt0t6t7 is labeled [0, 6, 7]. The coset stabilizing group will

be generated by N (0,6,7) =< Id(G) > such that
|N |

|N (0,6,7)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 6, 7]. The orbits of N (0,6,7) are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will

then pick a representative from each orbit and right multiply it to Nt0t6t7, consider the
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following relations:

t0t6t7t1 = x2z[t0t2t3t4]
yx−2z−1

,

t0t6t7t2 = yx2z[t0t6t2]
yx2z,

t0t6t7t3 = yxz−1[t0t6t7]
e,

t0t6t7t4 = x−1[t0t6t0]
x−1

,

t0t6t7t5 = yx−1z−1[t0t4t1t11]y,

t0t6t7t6 = x2z−1[t0t2t3t7]
x−1z−1

,

t0t6t7t7 = [t0t6] ( goes back to [0,6]),

t0t6t7t8 = x−2[t0t2t1]
yx−1

,

t0t6t7t9 = yx−1z−1[t0t6t0]
x−1z−1

,

t0t6t7t10 = yx−2[t0t2t3]
yz,

t0t6t7t11 = zx−2[t0t6t7]
yzx−2

,

t0t6t7t12 = yxz−1[t0t2t3t4]
yx−1z−1

,

t0t6t7t13 = zx−2[t0t2t3]
yxz,

t0t6t7t14 = x2z−1[t0t11t5]
z,

t0t6t7t15 = x2z−1[t0t2t6]
z−1

.

Thus, there is one single coset going back to the double coset [0, 6] Also, one single coset

moves forward to each of the double cosets [0, 6, 2], [0, 4, 1, 11], [0, 2, 3, 7], [0, 2, 1], [0, 11, 5]

and [0, 2, 6] while two single cosets continue to [0, 2, 3, 4], [0, 6, 7], [0, 6, 0], and [0, 2, 3].

Next, we will look into the double coset Nt0t6t15.

Nt0t6t0N

The double coset Nt0t6t15 is labeled [0, 6, 0]. The coset stabilizing group

will be generated by N (0,6,0) =< Id(G) > such that
|N |

|N (0,6,0)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 6, 0]. The orbits of N (0,6,0) are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will
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then pick a representative from each orbit and right multiply it to Nt0t6t15, consider

the following relations:

t0t6t0t1 = x[t0t6t7]
x t0t6t0t2 = x−2[t0t6t10]

zx−1
,

t0t6t0t3 = z−1[t0t6t0]
yz−1

,

t0t6t0t4 = x2[t0t4t10]
z,

t0t6t0t5 = yxz[t0t6t7]
xz,

t0t6t0t6 = yx−1[t0t2t3t7]
x,

t0t6t0t7 = yz[t0t4t1]
yx2z−1

,

t0t6t0t8 = yz−1[t0t2t6t7]
yx,

t0t6t0t9 = x[t0t2t3t7]
x2 ,

t0t6t0t10 = yx−2[t0t6t10]
x−2

,

t0t6t0t11 = yxz−1[t0t11t5]
yx,

t0t6t0t12 = z[t0t2t3]
yzx−2

,

t0t6t0t13 = yzx−2[t0t11t0]
yx−2z−1

,

t0t6t0t14 = yzx−2[t0t2t1]
yzx−1

,

t0t6t0t15 = [t0t6] ( goes back to [0,6]).

In summary, there is one single coset going back to the double coset [0, 6] and also

one single coset moves forward to each of the double cosets [0, 6, 0], [0, 4, 1], [0, 4, 10],

[0, 2, 6, 7], [0, 11, 5], [0, 2, 3], [0, 11, 0] and [0, 2, 1]. While two single cosets continue to

[0, 2, 3, 7], [0, 6, 7], and [0, 6, 10]. Next, we will look into the double coset Nt0t6t10.

Nt0t6t10N

The double coset Nt0t6t10 is labeled [0, 6, 10]. The coset stabilizing group will

be generated by N (0,6,10) =< (1, 15)(2, 13)(3, 14)(4, 11)(5, 10)(6, 8)(7, 12) > such that
|N |

|N (0,6,10)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 6, 10]. The orbits of N (0,6,10) are {9}, {1, 15}, {2, 13}, {3, 14}, {4, 11}, {5, 10}, {6, 8}
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and {7, 12}. We will then pick a representative from each orbit and right multiply it to

Nt0t6t10, consider the following relations:

t0t6t10t9 = x−2z−1[t0t4t1t9]
yxz,

t0t6t10t1 = yx2[t0t6t0]
x2 ,

t0t6t10t2 = xz−1[t0t6t0]
yx2 ,

t0t6t10t3 = yx2z−1[t0t2t1]
yx−1

,

t0t6t10t4 = yx2[t0t11t5]
yx−2z−1

,

t0t6t10t10 = [t0t6] ( goes back to [0,6]),

t0t6t10t6 = yx2[t0t11t5]
yx−2z−1

,

t0t6t10t7 = x−1z−1[t0t2t6t7]
yxz

.

Thus there is two single cosets going back to the double coset [0, 6] and also two single

cosets moves forward to each of the double cosets [0, 6, 7], [0, 2, 1], [0, 11, 5], [0, 4, 1], and

four progressed to [0, 6, 0]. While one single coset continue to [0, 4, 1, 9]. Next, we will

look into the double coset Nt0t11t15.

Nt0t11t0N

The double coset Nt0t11t15 is labeled [0, 11, 0]. The coset stabilizing group

will be generated by N (0,11,0) =< (1, 5)(2, 11)(4, 8)(6, 15)(7, 9)(10, 13)(12, 14) > such

that
|N |

|N (0,11,0)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 11, 0]. The orbits of N (0,11,0) are {3}, {1, 5}, {2, 11}, {4, 8}, {6, 15}, {7, 9}, {10, 13} and

{12, 14}. We will then pick a representative from each orbit and right multiply it to

Nt0t11t15, consider the following relations:
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t0t11t0t3 = z−1[t0t4t2t3]
z−1

,

t0t11t0t1 = yx2z[t0t4t2]
x,

t0t11t0t2 = yx−2[t0t6t0]
yx−2z−1

,

t0t11t0t4 = yx2[t0t2t3t7]
yz−1

,

t0t11t0t7 = x−1z−1[t0t2t3]
yx2

t0t11t0t10 = yx−2[t0t11t10]
zx−1

,

t0t11t0t12 = yzx−2[t0t4t10]
xz

t0t11t15t15 = [t0t11] ( goes back to [0,11]).

We see that there are two single cosets going back to the double coset [0, 11]. Also two

single cosets moves forward to each of the double cosets [0, 4, 2], [0, 6, 0], [0, 2, 3, 7], [0, 2, 3],

[0, 11, 10], [0, 4, 0], and one progressed to [0, 4, 2, 3]. Next, we will investigate the double

coset Nt0t11t10.

Nt0t11t10N

The double coset Nt0t11t10 is labeled [0, 11, 10]. The coset stabilizing group

will be generated by N (0,11,10) =< (1, 12)(2, 7)(3, 6)(4, 14)(5, 13)(9, 10)(11, 15) > such

that
|N |

|N (0,11,10)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 11, 0]. The orbits of N (0,11,10) are {8}, {1, 12}, {2, 7}, {3, 6}, {4, 14}, {5, 13}, {9, 10}
and {11, 15}. We will then pick a representative from each orbit and right multiply it
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to Nt0t11t10, consider the following relations:

t0t11t10t8 = x−1z−1[t0t6t2]
x,

t0t11t10t1 = yx2z[t0t4t2t3]
x2z−1

,

t0t11t10t2 = xz[t0t2t3t7]
x2z−1

,

t0t11t10t3 = yz−1[t0t4t1]
yx2 ,

t0t11t10t4 = yx−1z−1[t0t4t10]x
−2z−1,

t0t11t10t5 = zx−1[t0t4t10]
yz−1

,

t0t11t10t10 = [t0t11] ( goes back to [0,11]),

t0t11t10t11 = yz[t0t11t0]
yxz.

Thus, there are two single cosets going back to the double coset [0, 11]. Also two single

cosets moves forward to each of the double cosets [0, 4, 2, 3], [0, 2, 3, 7], [0, 4, 1], [0, 11, 0],

and four progressed to [0, 4, 10]; while one progressed to [0, 6, 2]. Next, we will investi-

gate the double coset Nt0t11t5.

Nt0t11t5N

The double coset Nt0t11t5 is labeled [0, 11, 5]. The coset stabilizing group

will be generated by N (0,11,5) =< Id(G) > such that
|N |

|N (0,11,5)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 11, 5]. The orbits of N (0,11,5) are

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will

then pick a representative from each orbit and right multiply it to Nt0t11t5, consider
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the following relations:

t0t11t5t1 = y[t0t2t3]
x2z−1

,

t0t11t5t2 = yxz−1[t0t2t6t7]
zx−2

,

t0t11t5t3 = yz[t0t6t]2
yx−2

,

t0t11t5t4 = yx2z[t0t11t5]
e,

t0t11t5t5 = [t0t11] ( goes back to [0,11]),

t0t11t5t6 = e[t0t4t10]x
−2z−1,

t0t11t5t7 = yx2[t0t2t3t7]
x,

t0t11t5t8 = yx−2[t0t4t1t11]
x−1z−1

,

t0t11t5t9 = x2z[t0t4t1t9]
yxz−1

,

t0t11t5t10 = zx−2[t0t6t7]
z−1

,

t0t11t5t11 = yzx−1[t0t6t10]
yx−2z−1

,

t0t11t5t12 = yxz[t0t6t0]
yx,

t0t11t5t13 = x−1z−1[t0t2t3t7]
e,

t0t11t5t14 = yx2z−1[t0t2t6]
zx−1

,

t0t11t5t14 = yx2z−1[t0t2t6]
zx−1

.

Resulting in one single coset continued onto the double cosets, [0, 6, 2], [0, 11, 5], [0, 4, 10],

[0, 4, 1, 11], [0, 4, 1, 9], [0, 6, 7], [0, 6, 10], [0, 6, 0], and [0, 2, 6, 7], each. And one single coset

goes back to [0, 11]. Next, we will investigate the double coset Nt0t2t3t4.

Nt0t2t3t4N

The double coset Nt0t2t3t4 is labeled [0, 2, 3, 4]. The coset stabilizing group

will be generated by N (0,2,3,4) =< (1, 2)(3, 8)(4, 6)(5, 7)(9, 13)(11, 12)(14, 15) > such

that
|N |

|N (0,2,3,4)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 2, 3, 4]. The orbits of N (0,2,3,4) are {10}, {1, 2}, {3, 8}, {4, 6}, {5, 7}, {9, 13}, {11, 12}
and {14, 15}. We will then pick a representative from each orbit and right multiply it
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to Nt0t2t3t4, consider the following relations:

t0t2t3t4t10 = x−1z−1[t0t4t1t11]
x−2

,

t0t2t3t4t1 = yzx−1[t0t2t3t4]
yx,

t0t2t3t4t3 = yx−1z−1[t0t2t6t7]
yx,

t0t2t3t4t4 = [t0t2t3] ( goes back to [0,2,3]),

t0t2t3t4t5 = xz[t0t2t6]
x−1

,

t0t2t3t4t9 = x[t0t2t3t7]
yx2 ,

t0t2t3t4t11 = yz[t0t6t7]
x2z,

t0t2t3t4t14 = x−2z−1[t0t6t7]
zx−2

.

We can interpret that there are two single cosets going back to the double coset [0, 2, 3]

and two loops back to [0, 2, 3, 4]. Also, two single cosets moves forward to each of the

double cosets [0, 2, 6, 7], [0, 2, 6], [0, 2, 3, 7], [0, 6, 7], and four progress to [0, 6, 7]. Next, we

will investigate the double coset Nt0t2t3t7.

Nt0t2t3t7N

The double coset Nt0t2t3t7 is labeled [0, 2, 3, 7]. The coset stabilizing group

will be generated by N (0,2,3,7) =< Id(G) > such that
|N |

|N (0,2,3,7)|
=

30

1
= 30, meaning

that there are 30 single cosets in the double coset [0, 2, 3, 7]. The orbits of N (0,2,3,7)

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, and {15}. We will

then pick a representative from each orbit and right multiply it to Nt0t2t3t7, consider
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the following relations:

t0t2t3t7t1 = yxz−1[t0t2t6t7]
yx−2

t0t2t3t7t2 = yx2[t0t6t0]
x−1

t0t2t3t7t3 = y[t0t11t0t
x−1

t0t2t3t7t4 = yz−1[t0t6t2]
x−1z−1

t0t2t3t7t5 = yx2z[t0t4t1t11]
x2z

t0t2t3t7t6 = yzx−2[t0t4t10]
yx

t0t2t3t7t7 = [t0t2t3] ( goes back to [0,2,3]),

t0t2t3t7t8 = yzx−2[t0t11t0]
yz−1

t0t2t3t7t9 = x2z[t0t11t10]
yz−1

t0t2t3t7t11 = yx2[t0t2t3t7]
e

t0t2t3t7t12 = x−1[t0t6t0]
x−2

t0t2t3t7t13 = xz[t0t11t5]
e

t0t2t3t7t14 = zx−2[t0t6t7]
xz

t0t2t3t7t0 = x[t0t2t3t4]
yx2

As a result there are two single cosets going back to the double coset [0, 2, 3] and one

loops back to [0, 2, 3, 7]. Also two single cosets move forward to each of the double cosets

[0, 6, 0], [0, 11, 5], and one progress to [0, 2, 6, 7], [0, 6, 2], [0, 4, 1, 11], [0, 4, 10], [0, 11, 0], [0, 6, 7],

and [0, 2, 3, 4] . Next, we will investigate the double coset Nt0t2t6t7.

Nt0t2t6t7N

The double coset Nt0t2t6t7 is labeled [0, 2, 6, 7]. The coset stabilizing group

will be generated by N (0,2,6,7) =< (1, 13)(2, 8)(3, 12)(4, 15)(5, 6)(9, 14)(10, 11) > such

that
|N |

|N (0,2,6,7)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 2, 6, 7]. The orbits of N (0,2,6,7) are {7}, {1, 13}, {2, 8}, {3, 12}, {4, 15}, {5, 6}, {9, 14}
and {10, 11}. We will then pick a representative from each orbit and right multiply it
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to Nt0t2t6t7, consider the following relations:

t0t2t6t7t1 = x−1z−1[t0t6t10]
yxz

t0t2t6t7t2 = yx2z[t0t2t3t4]
yx2z−1

t0t2t6t7t3 = yx2z[t0t6t0]
yx

t0t2t6t7t4 = yz−1[t0t11t5]
y

t0t2t6t7t5 = yz−1[t0t4t1]
yxz−1

t0t2t6t7t7 = [t0t2t6] ( goes back to [0,2,6]),

t0t2t6t7t9 = yx−2z−1[t0t4t1t11]
yx2

t0t2t6t7t10 = yz[t0t2t3t7]
yx−2

We see that there is one single coset going back to the double coset [0, 2, 6]. Also two sin-

gle cosets move forward to each of the double cosets [0, 6, 10], [0, 2, 3, 4], [0, 6, 0], [0, 11, 5],

[0, 4, 1], [0, 4, 1, 11], and [0, 2, 3, 7] . Next, we will investigate the double coset Nt0t2t6t7.

Nt0t4t2t3N

The double coset Nt0t4t2t3 is labeled [0, 4, 2, 3]. The coset stabilizing group

will be generated by N (0,4,2,3) =< (1, 3)(2, 9)(4, 7)(6, 14)(8, 11)(10, 12)(13, 15) > such

that
|N |

|N (0,4,2,3)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 4, 2, 3]. The orbits of N (0,4,2,3) {5}, {1, 3}, {2, 9}, {4, 7}, {6, 14}, {8, 11}, {10, 12} and

{13, 15}. We will then pick a representative from each orbit and right multiply it to
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Nt0t4t2t3, consider the following relations:

t0t4t2t3t5 = z[t0t11t0]
y

, t0t4t2t3t2 = xz−1[t0t4t2t3]
x2z−1

,

t0t4t2t3t3 = [t0t4t2] ( goes back to [0,4,2]),

t0t4t2t3t4 = yzx−2[t0t4t1t
yz−1

9 ,

t0t4t2t3t6 = yzx−1[t0t11t10]
z−1

,

t0t4t2t3t8 = zx−1[t0t4t1t9]
yzx−1

,

t0t4t2t3t10 = x−1[t0t4t10]
zx−2

,

t0t4t2t3t13 = yx2z[t0t4t1]
yx−1z−1

.

Thus, there are two single cosets going back to the double coset [0, 4, 2], and two loop

back to [0, 4, 2, 3]. Also two single cosets move forward to each of the double cosets

[0, 11, 10], [0, 4, 10], and [0, 4, 1]; while one continues to [0, 11, 0] and four advance to

[0, 4, 1, 9]. Next, we will investigate the double coset Nt0t4t1t9.

Nt0t4t1t9N

The double coset Nt0t4t1t9 is labeled [0, 4, 1, 9]. The coset stabilizing group

will be generated by N (0,4,1,9) =< (1, 4)(2, 10)(3, 11)(5, 9)(7, 15)(8, 14)(12, 13) > such

that
|N |

|N (0,4,1,9)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 4, 1, 9]. The orbits of N (0,4,1,9) {6}, {1, 4}, {2, 10}, {3, 11}, {5, 9}, {7, 15}, {8, 14} and
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{12, 13}.

t0t4t1t9t6 = x−2z−1[t0t6t10]
yxz,

t0t4t1t9t1 = xz[t0t4t10]
yx2 ,

t0t4t1t9t2 = x−1z−1[t0t4t1t9]
yx2 ,

t0t4t1t9t3 = yx2z[t0t4t1t11]
x,

t0t4t1t9t7 = zx−1[t0t4t2t3]
z−1

,

t0t4t1t9t8 = yx2z[t0t4t2t3]
z,

t0t4t1t9t9 = [t0t4t1] ( goes back to [0,4,1]),

t0t4t1t9t12 = x2z[t0t11t5]
yxz−1

.

In summary there are two single cosets going back to the double coset [0, 4, 1], and two

loop back to [0, 4, 1, 9]. Also two single cosets move forward to each of the double cosets

[0, 4, 10], [0, 4, 1, 11], and [0, 11, 5]; while one continues to [0, 6, 10] and four advance to

[0, 4, 2, 3]. Next, we will investigate the double coset Nt0t4t1t11.

Nt0t4t1t11N

The double coset Nt0t4t1t11 is labeled [0, 4, 1, 11]. The coset stabilizing group

will be generated by N (0,4,1,11) =< (2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14) > such

that
|N |

|N (0,4,1,11)|
=

30

2
= 15, meaning that there are 15 single cosets in the double coset

[0, 4, 1, 11]. The orbits of N (0,4,1,11) {1}, {2, 4}, {3, 5}, {6, 10}, {7, 11}, {8, 9}, {12, 15} and
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{7, 11}.

t0t4t1t11t1 = xz[t0t2t3t4]
yx−2

,

t0t4t1t11t2 = e[t0t4t10]
yx−2z−1

,

t0t4t1t11t3 = yxz[t0t6t7]
y,

t0t4t1t11t6 = yz−1[t0t11t5]
xz,

t0t4t1t11t8 = yx−2[t0t4t1t9]
yx,

t0t4t1t11t12 = yxz−1[t0t2t6t7]
yz−1

,

t0t4t1t11t11 = [t0t4t1] ( goes back to [0,4,1]),

t0t4t1t11t13 = yz−1[t0t2t3t7]
yx2z.

Thus, there are two single cosets going back to the double coset [0, 4, 1]. Also two single

cosets move forward to each of the double cosets [0, 4, 10], [0, 6, 7], [0, 4, 1, 9], [0, 2, 6, 7]

and [0, 11, 5]; while one continues to [0, 2, 3, 4] .

In conclusion, since our group is closed under right multiplication of t′is, we

are done with our double coset enumeration of G , refer to the Cayley graph below.

3.3.1 Proof G ∼= L2(31)

We factor the progenitor 2∗15 : D15 by the relations (z ∗ t)4, (x2 ∗ z−1 ∗ t)10 and

(x2 ∗ z ∗ t)3. Let G ∼= 2∗15:D14
(z∗t)4,(x2∗z−1∗t)10,(x2∗z∗t)3

∼= L2(31) be a symmetric presentation

of G given by < x, y, z, t|y2, z3, (x−1y)2, (x, z), (yz−1)2, x−5, t2, (t, yxz), (zt)4, (x2z−1 ∗
t)10, (x2zt)3, yxtztz−1t > where N∼= D15 and

x = (1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11),

y = (2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14),and

z = (1, 3, 5)(2, 7, 8)(4, 9, 11)(6, 12, 13)(10, 14, 15).

Definition Generators of PSL(2,q) (where p is a finite field of order p2 where

p is prime). Note, we will refer to this as L2(q)
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In L2(31) our field is 31,

F31 = Z31 =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30}
F31 ∪∞ =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30} ∪∞.
The non-zero squares in F30 are 12, 22, 32, ..., 292, 302

in mod7 = {1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28}.
The group is generated by, L(2, 31) = x→ ax+b

cx+d where x ∈ F31 ∪∞, a, b, c, d ∈ F31 and

ad− bc = 1 or equicantly a non-zero square.

Permutations of our presentation of L2(31) will be α, β, and γ, which are defined and

listed below,

α : x→ x+ 1 =

(∞)(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31)

β : x→ 4x =

(∞)(0)(1, 7, 18, 2, 14, 5, 4, 28, 10, 8, 25, 20, 16, 19, 9)(3, 21, 23, 6, 11, 15, 12, 22, 30,

24, 13, 29, 17, 26, 27)

γ : x→ −1
x =

(0,∞)(1, 30)(2, 15)(3, 10)(4, 23)(5, 6)(7, 22)(8, 27)(9, 24)(11, 14)(12, 18)

(13, 19)(16, 29)(17, 20) (21, 28)(25, 26),

alpha, beta and gamma suffice to generate L2(31).

With the help of MAGMA we can find the homomorphic projection of t; this let’s us

know that homorphisms of φ(x), φ(y), φ(z) and φ(t) are (1, 32, 21, 20, 2)(3, 11, 19, 13, 9)

(5, 16, 30, 31, 10)(6, 17, 12, 22, 23)(7, 28, 26, 14, 29)(8, 27, 25, 15, 24), (1, 8)(2, 27)(3, 5)

(4, 18)(6, 7)(9, 16)(10, 11)(12, 14)(13, 30)(15, 21)(17, 29)(19, 31)(20, 25)(22, 26)(23, 28)(24, 32)

and (1, 23, 5)(2, 22, 10)(3, 28, 8)(6, 16, 32)(7, 24, 9)(11, 26, 27)(12, 31, 20)(13, 29, 15)

(14, 25, 19)(17, 30, 21), (1, 18)(2, 6)(3, 21)(4, 11)(5, 27)(7, 14)(8, 19)(9, 32)(10, 30)(12, 16)

(13, 22)(15, 28)(17, 31)(20, 25)(23, 26)(24, 29) respectively. Now we will prove that G

is isomorphic to L(2, 31) by constructing a homomorphism φ from the progenitor to

L(2, 31). Let
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φ(x) ≡ 21x−10
x−1 = (1,∞, 21, 20, 2)(3, 11, 19, 13, 9)(5, 16, 30, 0, 10)(6, 17, 12, 22, 23)

(7, 28, 26, 14, 29)(8, 27, 25, 15, 24)

φ(y) ≡ 24x−29
x−24 = (1, 8)(2, 27)(3, 5)(4, 18)(6, 7)(9, 16)(10, 11)(12, 14)(13, 30)(15, 21)

(17, 29)(19, 0)(20, 25)(22, 26)(23, 28)(24,∞)

φ(z) ≡ 8x−9
x−5 = (1, 23, 5)(2, 22, 10)(3, 28, 8)(6, 16, 32)(7, 24, 9)(11, 26, 27)(12, 31, 20)

(13, 29, 15)(14, 25, 19)(17, 30, 21).

We now let φ(t0) ≡ 9x+6
x+9 = (1, 18)(2, 6)(3, 21)(4, 11)(5, 27)(7, 14)(8, 19)(9, 32)(10, 30)

(12, 16)(13, 22)(15, 28)(17, 0)(20, 25)(23, 26)(24, 29).

Note, we will use 32 as ∞ and 31 as 0, reason being that in magma we use numbers

to denote infinity and to keep trend we will also do this with 0. And by conjugation,

we would prove |tN0 | = 15. So that N permutes the fifteen images of t0, by conjugation

L2(7) is given by,

φ(x) : (t1, t2,6 , t10, t4)(t3, t7, t12, t14, t9)(t5, t8, t13, t15t11) and

φ(y) : (t2, t4)(t3, t5)(t6, t10)(t7, t11)(t8, t9)(t12, t15)(t13, t14)

φ(z) : (t1, t3, t5)(t2, t7t8)(t4, t9t11)(t6, t12t13)(t10, t14t15),

thus φ(2∗15 : D15) ∼= L2(31).

Thus L2(31) is an image of G, so the |G| ≥ |L2(31)| but |G| ≤ 496 = |L2(31)|
and so the equality holds and G ∼= L2(31).

Now the relations given by (x2z−1t)10, (x2zt)3 and (zt)4=1 where their or-

der are 10, 3 and 4 respectively match the order of the images. Thus, the order of

|φ(x2)φ(z−1)t| = 10, |φ(x2)φ(z)t| = 3 and |φ(z)t| = 4. Therefore, L2(31) is an image

of G, so the |G| ≥ |L2(31)| but |G| ≤ 496 = |L2(31)| and so the equality holds and

G ∼= L2(31).

3.4 Double Coset Enumeration of M12 Over L2(11)

3.4.1 Introduction

Usually, when we perform a double coset enumeration we work with the control

group N , as we have done on other examples. Yet, sometimes we come across new and

exciting groups that are too large to perform a double coset enumeration on; on such

instances it is of help to factor our group by a maximal subgroup. This allows us to
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work with a smaller isomorphic image of our original group. First, we will go in detail

as to how we find a maximal subgroup.

3.4.2 Factoring G by Maximal Subgroup

We have the progenitor 2∗15 : A5
∼= M12 where x = (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)

(4, 5, 11, 13, 8) and y = (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13), and is factored by

the relations (x2t)4, (ytx
3
)6, (xt)5, and (yt)6. When looking into our group with the help

of MAGMA, we see that the number of double cosets that this Mathieu Group 12, or

M12 for short, has is a bit too excessive, with 47 doble cosets. Thus we will proceed by

factoring our group G by a maximal subgroup.

> G<x,y,t>:=Group<x,y,t|xˆ5, yˆ3, (x*y*x)ˆ2, tˆ2, (t,xˆ2*y),
> (t,x*yˆ-1*xˆ-1*y*x), (xˆ2*t)ˆ4, (y*tˆ(xˆ3))ˆ6,
> (x*t)ˆ5, (y*t)ˆ6>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> CompositionFactors(G1);

G
| M12
1

> #DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
47

> IN:=sub<G1|f(x),f(y)>;
> M:=MaximalSubgroups(G1);
> #M;
11
>
> for i in [1..#M] do #M[i] ‘subgroup; end for;
72
660
240
192
192
432
432
1440
1440
7920
7920
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Listed above are the possible maximal subgroups that we could use, though

not all will work. Either because the maximal subgroup is not a factor of our group

G, or because the list of conjugates within each maximal subgroup does not contain

generators that will produce our control group made up of the permutations x and y

from our group G. Ideally, we would like to start off with one of the maximal subgroups

of largest order, but in our case, they did not work; however, the second maximal

subgroup did, we refer to it as M [2].

> M[2];
rec<recformat<order, length, subgroup, presentation> |

order := 660,
length := 144,
subgroup := Permutation group acting on a set of
cardinality 1584 Order = 660 = 2ˆ2 * 3 * 5 * 11>

> D:=M[2]‘subgroup;
> DD:=Conjugates(G1,D);
> DD:=Setseq(DD);
> for i in [1..#DD] do if f(x) in DD[i] and f(y) in DD[i]
for> then i; end if; end for;
7
14

Magma is very usuful for this because M [2] is of length 144, meaning we would have

to check each one of those 144 subgroups to see which will gernerate the permutations

x and y. The following loop checks to see which of the 144 conjugates of our maximal

subgroup M [2] will work with our permutations x and y. In response, MAGMA found

that the seventh conjugate of M [2] will work for this situation (note the response from

MAGMA will change every time we log on).

> for g in DD[7] do if sub <G1|f(x),f(y),g> eq DD[7]
for|if> then A:=g;
for|if> break; end if; end for;
> Order(A);
11
> W:=WordGroup(G1);
> rho:=InverseWordMap(G1);
> A@rho;
function(W)

w4 := W.2 * W.3; w5 := W.2 * w4; w6 := w4 * W.2; w7 :=
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w5* w6; w8 := w6 * W.2; w9 := w7 * w8; w10 := W.1ˆ2;
w11 := w9* w10; w12 := W.1 * w6; w13 :=w11 * w12; w14
:= w12 * w8; w15 := w13 * w14; w16 := w10 * w14; w17 :=
w15 *w16; w18 := w16 * w10; w19 := w17 * w18; w20 :=
w12 * w16; w21 := w19 * w20; w22 := w6 * w20; w23 :=
w21 * w22; w3 := W.3ˆ-1; w24 := w3 * W.1; w25 := w3 *
W.2; w26:= w24 * w25; w1 := W.1ˆ-1; w27 := w1 * w3;
w28 := w3* w27; w29 := w24 * w28; w30 := w26 * w29;
w31 := w23* w30; w33 := w31 * W.3; w34 := w33 * W.2;
w35 := w34* W.3; w36 := w35 * w31; w37 := w36 * W.2;
w38 := w37 * W.3; w39 := w38 * W.1; return w39;

end function

> for g in DD[7] do if sub <G1|f(x),f(y),g> eq DD[7]
for|if> then g@rho;
for|if> break; end if; end for;
function(W)

w4 := W.2 * W.3; w5 := W.2 * w4; w6 := w4 * W.2; w7 := w5

* w6; w8 := w6 * W.2; w9 := w7 * w8; w10 := W.1ˆ2; w11 :=
w9 * w10; w12 := W.1 * w6; w13 := w11 * w12; w14 := w12 *
w8; w15 := w13 * w14; w16 := w10 * w14; w17 := w15 *w16;
w18 := w16 * w10; w19 := w17 * w18; w20 := w12 * w16;
w21 := w19 * w20; w22 := w6 * w20; w23 := w21 * w22;
w3 := W.3ˆ-1; w24 := w3 * W.1; w25 := w3 * W.2; w26
:= w24 * w25; w1 := W.1ˆ-1; w27 := w1 * w3; w28 := w3 *
w27; w29 := w24 * w28; w30 := w26 * w29; w31 := w23

* w30; w33 := w31 * W.3; w34 := w33 * W.2; w35 := w34

* W.3; w36 := w35 * w31; w37 := w36 * W.2; w38 := w37

* W.3; w39 := w38 * W.1; return w39;
end function

>A:=function(W)
w4 := W.2 * W.3; w5 := W.2 * w4; w6 := w4 *
W.2; w7 := w5 * w6; w8 := w6 * W.2; w9 :=
w7 * w8; w10 := W.1ˆ2; w11 := w9 * w10; w12
:= W.1 * w6; w13 := w11 * w12; w14 := w12 * w8;
w15 := w13 * w14; w16 := w10 * w14; w17 := w15

*w16; w18 := w16 * w10; w19 := w17 * w18; w20
:= w12 * w16; w21 := w19 * w20;w22 := w6 * w20;
w23 := w21 * w22; w3 := W.3ˆ-1; w24 := w3 * W.1;
w25 := w3 * W.2; w26 := w24 * w25; w1 := W.1ˆ-1;
w27 := w1 * w3; w28 := w3 * w27; w29 := w24 *
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w28; w30 := w26 * w29; w31 := w23 * w30; w33
:= w31 * W.3; w34 :=w33 * W.2; w35 := w34 * W.3;
w36 := w35 * w31; w37 := w36 * W.2; w38 := w37

* W.3; w39 := w38 * W.1; return w39;
end function;

>AA:=A(G);
>AA;
yˆ2 * t * y * t * yˆ2 * t * yˆ2 * xˆ3 * y * t * y * x * y

* t * yˆ2 * t * yˆ2 * xˆ3 * y * t * yˆ2 * t * yˆ2 * xˆ3

* y * t * yˆ2 * t * yˆ2 * xˆ3 * y * t * y * xˆ3 * y * t *
yˆ2 * t * yˆ3 * t * y * x * y * t * y * xˆ3 * y * t * yˆ2

* t * yˆ2 * tˆ-1 * x * tˆ-1 * y * tˆ-1 * x * tˆ-1 * xˆ-1

* y * t * yˆ2 * t * y * t * yˆ2 * t * yˆ2 * xˆ3 * y *t * y

* x * y * t * yˆ2 * t * yˆ2 * xˆ3 * y * t * yˆ2 * t * yˆ2

* xˆ3 * y * t * yˆ2 * t * yˆ2 * xˆ3 * y * t * y * xˆ3 * y

* t * yˆ2 * t * yˆ3 * t * y * x * y * t * y * xˆ3 * y * t *
yˆ2 * t * yˆ2 * tˆ-1 *x * tˆ-1 * y * tˆ-1 * x * tˆ-1 *
xˆ-1 * tˆ-1 * y * t * x

We will now check if it is at all possible to condense the permutations listed above by

using the Schreier System.

> G<x,y,t>:=Group<x,y,t|xˆ5, yˆ3, (x*y*x)ˆ2, tˆ2, (t,xˆ2*y),
> (t,x*yˆ-1*xˆ-1*y*x),(xˆ2*t)ˆ4,(y*tˆ(xˆ3))ˆ6,(x*t)ˆ5,(y*t)ˆ6>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> NN:=G;
> N:=G;
> N:=G1;
> #N;
95040

>Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
>ArrayP:=[Id(N): i in [1..95040]];
>for i in [2..95040] do
>P:=[Id(N): l in [1..#Sch[i]]];
>for j in [1..#Sch[i]] do
>if Eltseq(Sch[i])[j] eq 1 then P[j]:=f(x); end if;
>if Eltseq(Sch[i])[j] eq -1 then P[j]:=f(xˆ-1); end if;
>if Eltseq(Sch[i])[j] eq 2 then P[j]:=f(y); end if;
>if Eltseq(Sch[i])[j] eq -2 then P[j]:=f(yˆ-1); end if;
>if Eltseq(Sch[i])[j] eq 3 then P[j]:=f(t); end if;
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>end for;
>PP:=Id(N);
>for k in [1..#P] do
>PP:=PP*P[k]; end for;
>ArrayP[i]:=PP;
>end for;

>W:=WordGroup(G1);
>rho:=InverseWordMap(G1);
>AA:=f(A(G));
>Order(AA);
>for i in [1..95040] do if ArrayP[i] eq N!AA then Sch[i];
> end if; end for;
xˆ-1 * yˆ-1 * t * yˆ-1 * t * yˆ-1 * x * t * x

Our goal is achieved! The maximal subgroup, M [2], of the group G can be expressed

as x−1y−1ty−1ty−1xtx.

>IM:=sub<G1|f(x),f(y),
> f(xˆ-1 * yˆ-1 * t * yˆ-1 * t * yˆ-1 * x * t * x)>;
>#IM;
660
>CompositionFactors(IM);

G
| A(1, 11) = L(2, 11)
1

> #DoubleCosets(G,sub<G|x,y,
> xˆ-1 * yˆ-1 * t * yˆ-1 * t * yˆ-1 * x * t * x>,
> sub<G|x,y>);
11

3.4.3 Double Coset Enumeration of L2(11) ∼= M12

We have successfully factored G by a maximal subgroup and will now continue

by performing double coset enumerations of L2(11), which only has an appealing 11

double cosets.

Again, we have the progenitor 2∗15 : A5
∼= M12 where x = (1, 9, 10, 3, 14)

(2, 15, 7, 12, 6)(4, 5, 11, 13, 8) and y = (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13), fac-

tored by relations (x2t)4, (ytx
3
)6, (xt)5, and (yt)6. By letting t be represented by t1, let us

compute our four listed relations. To make our work easier, let π = x2 = (1, 10, 14, 9, 3)

(2, 7, 6, 15, 12)(4, 11, 8, 5, 13):
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[x2t]4 = e

[πt]4 = e

π4tπ
3
tπ

2
tπt = e

π = t9t14t10t1

(1, 3, 9, 14, 10)(2, 12, 15, 6, 7)(4, 13, 5, 8, 11)t9t14t10t1 = e

(1, 3, 9, 14, 10)(2, 12, 15, 6, 7)(4, 13, 5, 8, 11)t9t14 = t1t10.

And y = (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13):

[ytx
3
]6 = e

[yt3]
6 = e (since(t1)

x3 = t3)

y6ty
5
ty

4
ty

3
ty

2
tyt = e

y6t11t7t3t11t8t5t3 = e

et11t7t3t11t8t5t3 = e

t11t7t3t11t8 = t3t5.

Letting x = (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8):

[xt]5 = e

x5tx
4
tx

3
tx

2
txt = e

x5t14t3t10t9t1 = e

et14t3t10t9t1 = e

t14t3t10 = t1t9.
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And y = (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13):

[yt]6 = e

y6ty
5
ty

4
ty

3
ty

2
tyt = e

y6t10t4t1t10t4t1 = e

et10t4t1t10t4t1 = e

t10t4t1t10 = t1t4.

Now A5 ≤ L2(11) ≤max M12. Thus we will perform a double coset enumera-

tion of G over M where M = L2(11) and N ≤ M ≤ M . As we identified in the code

above, M =< f(x), f(y), f(x−1∗y−1∗t∗y−1∗t∗y−1∗x∗t∗x) > is isomorphic to L2(11).

We will perform manual double coset enumeration of G over M . In order to

express G as a union of double cosets, we will interpret it as MgN , where g is an el-

ement of G; such that G = MeN ∪Mg1N ∪Mg2N..., where g′is are words in the t′is.

Our objective is to find the number of single cosets contained in each double coset [w]

defined as [w] = {Mwn|n ∈M}. We will know when we are done with our double coset

enumeration when the set of right cosets is closed under right multiplication, meaning

all of our potential new double cosets are already recognized. We declare each double

coset [w] where Mwti will belong to one of the symmetric generators of ti from each of

the orbits of the coset stabiliser group; defined as M (w) = {n ∈ N |Mwn = Mw}, and

where each w is a word of t′is on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

N e N

We begin with the double coset MeN = {Nen|n ∈ N}, labeled [∗], and con-

tains one single coset, M . The coset stabilizer of M is the control group N and thus

has a single orbit of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} of which we will perform

right multiplication. Any element of the orbit can be the representative, we chose the

orbit representative of 1. This means that Met1 = Mt1N is a new double coset [1] and

since there is 15 single coset in the orbit of [∗], 15 single cosets will move forward to the
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coset [1].

N t1 N

For the double coset Mt1N we need to find the point stabilizer, N1, and the

coset stablising group N (1) to discern how many single cosets are in [1],

N (1) ≤< (2, 11)(3, 4)(5, 12)(7, 9)(10, 13)(14, 15), (2, 5)(3, 13)(4, 10)(7, 14)(9, 15)(11, 12) >

≤ 4.

Thus, the order of the coset stabliser is 4. The number of single cosets is defined as
|N |
|N(1) , so the number of single cosets in N (1) = |N |

|N(1) = 30
4 = 15. And our index is

represented by the sum of single cosets in each distinct double coset, so far we only

have established the cosets [∗] and [1], 1 + 15 = 16. The total amount of single cosets

is characterized as G
M , so the entirety of the double coset enumeration we should have

a total of 95040
660 = 144 single cosets. This will also be another clue to let us know

that we have completed the double coset enumeration. Carrying on, the orbits of [1] are

{1}, {6}, {8}, {2, 11, 5, 12}, {3, 4, 13, 10}, {7, 9, 14, 15} and will pick a coset representative

from each of the orbits to determine if any double cosets Mt1ti are new:

Mt1t1 = Me,∈ [∗] (1 will loop back to [*])

Mt1t6 ∈ [1, 6]

Mt1t8 ∈ [1, 8]

Mt1t2 ∈ [1, 2]

Mt1t3 ∈ [1, 3]

Mt1t7 ∈ [1, 7].

Consequently, the new double cosets are Mt1t6,Mt1t8,Mt1t2,Mt1t7 and will be respec-

tively labeled as [1, 6], [1, 8], [1, 2] and [1, 7].

N t1t6 N
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Similarly as above, we will need to find the point stabilizer, N1,6, and the coset

stabilizing group N (1,6) to calculate the single cosets that live in [1, 6]. The order of the

coset stabilizing group is, N (1,6) ≤< (2, 11)(3, 4)(5, 12)(7, 9)(10, 13)(14, 15), (2, 5)

(3, 13)(4, 10)(7, 14)(9, 15)(11, 12), (1, 6, 8)(2, 9, 4)(3, 12, 15)(5, 7, 13)(10, 11, 14) >≤ 12. So

the order of the coset stabilizer is N (1,6) = |N |
|N(1,6) = 60

12 = 5, thus the order the double

coset [1, 6] contains is 5 single cosets. Therefore, the index is now 1 + 15 + 5 = 21. The

orbits of the coset [1, 6] are {1, 6, 8}, {2, 9, 4}, {3, 12, 15}, {5, 7, 13}, {10, 11, 14} and we

will pick a representative from each orbit and right multiply, Mt1t6ti:

Mt1t6t6 = Mt1,∈ [1] (3 single cosets loop back to [1])

Mt1t6t2 ∈ [1, 6, 2]

Mt1t6t3 = y2x−1y−1xyt5t3t1t8t1t10

⇒Mt1t6t3 = t8t1t10 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and y2x−1y−1xyt5t3t1 ∈M),

Mt1t6t5 = x−1y−3x2y−1t7t12t6t1t6t5

⇒Mt1t6t5 = t1t6t5 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and x−1y−3x2y−1t7t12t6 ∈M),

Mt1t6t10 = yxy−1x−1t12t4t1t8t1t3

⇒Mt1t6t5 = t8t1t3 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and yxy−1x−1t12t4t1 ∈M).

As we can see, in this particular double coset, we had 12 of the orbits move

forward to the coset [1, 6, 2] with the exception of one orbit representative going back

to the coset [1], resulting in 3 single cosets going back to [1].

N t1t8 N

Alike, we will need to find the point stabilizer, N1,8, and the coset stabilizing

group N (1,8) to calculate the single cosets that live in [1, 8]. The order of the coset stabi-

lizing group is, N (1,8) ≤< (2, 11)(3, 4)(5, 12)(7, 9)(10, 13)(14, 15), (2, 5)(3, 13)(4, 10)(7, 14)

(9, 15)(11, 12), (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8) >≤ 60. As a result the order

of the coset stabilizer is N (1,8) = |N |
|N(1,8) = 60

60 = 1, thus the double coset [1, 8] has 1

single coset. Therefore, the index is now 1 + 15 + 5 + 1 = 22. The orbits of the coset

[1, 8] are {3}, {7}, {11}, {1, 9}, {2, 6}, {4, 8}, {5, 13}, {10, 14}, {12, 15} and we will pick a

representative from each orbit and right multiply, Mt1t8ti:
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Mt1t8t3 = yx−2yxy−1t5t6t10t1t7

⇒Mt1t8t3 = t7 ∈ [1]

(Since {N(t1)
n|n ∈ N} and yx−2yxy−1t5t6t10t1 ∈M),

Mt1t8t7 = yx−2yxy−1t5t6t10t1t11

⇒Mt1t8t7 = t11 ∈ [1]

(Since {N(t1)
n|n ∈ N} and yx−2yxy−1t5t6t10t1 ∈M),

Mt1t8t11 = yx−2yxy−1t5t6t10t1t3

⇒Mt1t8t11 = t3 ∈ [1]

(Since {N(t1)
n|n ∈ N} and yx−2yxy−1t5t6t10t1 ∈M),

Mt1t8t1 = et6

⇒Mt1t8t1 = t6 ∈ [1]

(Since {N(t1)
n|n ∈ N} and et6 ∈M),

(questions about this one )

Mt1t8t2 = x2yxy−2x−1t5t9t14t4

⇒Mt1t8t2 = t4 ∈ [1]

(Since {N(t1)
n|n ∈ N} and x2yxy−2x−1t5t9t14t1 ∈M),

Mt1t8t8 = Mt1,∈ [1] (2 single cosets loop back to [1])

Mt1t8t5 = xyxy−1xt3t1t4t10

⇒Mt1t8t5 = t10 ∈ [1]

(Since {N(t1)
n|n ∈ N} and xyxy−1xt3t1t4 ∈M),

Mt1t8t10 = xyxy−1xt3t1t4t15

⇒Mt1t8t10 = t15 ∈ [1]

(Since {N(t1)
n|n ∈ N} and xyxy−1xt3t1t4 ∈M),

Mt1t8t12 = y2xt15t8t9t13

⇒Mt1t8t12 = t13 ∈ [1]

(Since {N(t1)
n|n ∈ N} and y2xt15t8t9 ∈M).

As we can see, all the potentially new single cosets in the double coset [1, 8] loop back

to the double coset [1].

N t1t2 N

The order of the coset stabilizing group of the coset [1, 2] is made up of,



67

N (12) ≤< (1, 14)(2, 7)(3, 9)(4, 11)(6, 12)(8, 13) >≤ 2; as a result the order of the coset

stabilizer is N (1,2) = |N |
|N(1,2) = 60

2 = 30, so the order of the double coset [1, 2] is 30.

Therefore, the index is now 1 + 15 + 5 + 1 + 30 = 52. The orbits of the coset [1, 2]

are {5}, {10}, {15}, {1, 14}, {2, 7}, {3, 9}, {4, 11}, {6, 12}, {8, 13}. We will pick a repre-

sentative from each orbit and right multiply, Mt1t2ti, however consider the following

relations:

Mt1t2t5 = xyxy−1xy−1t11t10t1t4t8

⇒Mt1t2t5 = t4t8 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and xyxy−1xy−1t11t10t1 ∈M),

Mt1t2t15 ∈ [1, 2, 15], Mt1t2t1 = x2y−1t6t5t9t1t12

⇒Mt1t2t1 = t1t12 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and x2y−1t6t5t9 ∈M),

Mt1t2t2 = Mt1,∈ [1] (2 single cosets loop back to [1]),

Mt1t2t3 = x−1x−1y3xt1t3t5t6t7

⇒Mt1t2t3 = t6t7 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and x−1x−1y3xt1t3t5 ∈M),

Mt1t2t4 = yx3y−1t1t14t11t6t12t9

⇒Mt1t2t4 = t12t9 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and yx3y−1t14t11t6 ∈M),

Mt1t2t6 = xy−1y−1x−1y−1t5t6t10t1t13t5

⇒Mt1t2t6 = t13t5 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and xy−1y−1x−1y−1t5t6t10 ∈M),

Mt1t2t8 = x−1y3xt1t3t5t15t5t12

⇒Mt1t2t8 = t15t5t12 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and x−1y3xt1t3t5 ∈M).

We have discovered one new double coset [1, 2, 15] of which only the coset rep-

resentative {15} will advance. From this two letter double coset [1, 2], we see that two

single cosets from the orbit {8, 13} will move forward to [1, 6, 2]. While single cosets

from the orbits {5}, {1, 14}, {3, 9} looped back to [1, 2] and the two single cosets form

{4, 11} continued to [1, 7].

N t1t7 N
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Reiteratively, the order of the coset stabilizing group of the coset [1, 7] is made

up of, N (17) ≤ (1, 10)(3, 14)(5, 8)(6, 15)(7, 12)(11, 13) >≤ 2; therefore the order of the

coset stabilizer is N (1,7) = |N |
|N(1,7) = 60

2 = 30, as concluded, the order of the double coset

[1, 7] is 30. Resulting in the index increasing 30 single cosets; 1+15+5+1+30+30 = 82.

The orbits of the coset [1, 7] are {2}, {4}, {9}, {1, 10}, {3, 14}, {5, 8}, {6, 15},
{7, 12}, {11, 13}, in the next step we will pick a representative from each orbit and right

multiply, Mt1t7tis, however consider the following relations:

Mt1t7t2 ∈ [1, 7, 2]

Mt1t7t4 ∈ [1, 7, 4]

Mt1t7t9 = y2x2yx−1t10t14t8t12t10

⇒Mt1t7t9 = t12t10 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and 2x2yx−1t10t14t8 ∈M),

Mt1t7t1 = (y−1x)3t1t13t2t9t2t15

⇒Mt1t7t1 = t9t2t15 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and (y−1x)3t1t13t2 ∈M),

Mt1t7t3 = x−1y3xt1t3t5t5t11

⇒Mt1t7t3 = t5t11 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and x−1y3xt1t3t5 ∈M),

Mt1t7t5 = xy−1t6t5t9t10t6

⇒Mt1t7t5 = t10t6 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and xy−1t6t5t9 ∈M),

Mt1t7t6 = x2y−1t10t14t8t15t9

⇒Mt1t7t6 = t15t9 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and x2y−1t10t14t8 ∈M),

Mt1t7t7 = Mt1,∈ [1] (2 single cosets loop back to [1]),

Mt1t7t11x = y3xyxt12t4t1t6t4

⇒Mt1t7t11 = t6t4 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and y3xyxt12t4t1 ∈M).

Consequently, there are now two new double cosets, [1, 7, 2] and [1, 7, 4], each with one

orbit moving forward; also, two double cosets moving forward to [1, 6, 2], and four go to

[1, 2]. While, five orbits loop back for [1, 7], two loop back to [1].
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N t1t6t2 N

We have now been able to advance to double cosets consisting of three let-

ters, in this case we are working with the new distinct double coset [1, 6, 2] which

branched out from [1, 6]. The order of the coset stabilizing group of [1, 6, 2] is gen-

erated by, N (1,6,2) ≤ (2, 5)(3, 13)(4, 10)(7, 14)(9, 15)(11, 12) >≤ 2; therefore the order

of the coset stabilizer is N (1,7) = |N |
|N(1,6,2) = 60

2 = 30, thus, the order of the double

coset [1, 6, 2] is 30. So the number of single cosets, or the index, is increasing 30 sin-

gle cosets; 1 + 15 + 5 + 1 + 30 + 30 + 30 = 112. The orbits of the coset [1, 6, 2] are

{1}, {6}, {8}, {2, 5}, {3, 13}, {4, 10}, {7, 14}, {9, 15}, {11, 12}, let us continue by picking

a representative from each orbit and right multiplying, Mt1t6t2tis, however consider the

following relations:

Mt1t6t2t11 = xyxyx3t13t3t9t13t14t9

⇒Mt1t6t2t11 = t13t14t9 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and xyxyx3t13t3t9 ∈M),

Mt1t6t2t6 = xy−1x−1yx−1yxy−1t9t5t6t1t6t11

⇒Mt1t6t2t6 = t1t6t11 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and xy−1x−1yx−1yxy−1t9t5t6 ∈M),

Mt1t6t2t8 = y2x−1xyt5t3t1t1t6t12

⇒Mt1t6t2t8 = t1t6t12 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and y2x−1xyt5t3t1 ∈M),

Mt1t6t2t2 = Mt1t6,∈ [1, 6] (2 single cosets loop back to [1, 6]),

Mt1t6t2t3 = xy−1x−1yyxyt6t2t15t7t10

⇒Mt1t6t2t3 = t7t10 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and xy−1x−1yyxyt6t2t15 ∈M),

Mt1t6t2t4 = x−1yxy−1x−1t4t12t9t14t10t6t11

⇒Mt1t6t2t4 = t10t6t11 ∈ [1, 7, 4]

(Since {N(t1t7t4)
n|n ∈ N} and x−1yxy−1x−1t4t12t9t14 ∈M),

Mt1t6t2t1 ∈ [1, 6, 2, 9] Mt1t6t2t11 = xyxyx3t13t3t9t13t14t9

⇒Mt1t6t2t11 = t13t14t9 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and xyxyx3t13t3t9 ∈M).

Subsequently, two double cosets go back to [1, 6] and two go back to [1, 2] and [1, 7]
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each. From the singleton orbits, each ended up going to the coset [1, 6, 2] along with

two more; and two moved to [1, 7, 4]. Also, we discovered a new distinct double coset

[1, 6, 2, 9].

N t1t2t15 N

The order of the coset stabilizing group of the coset [1, 2, 15] is made up of,

N (1,2,15) ≤< (1, 2, 7, 14, 5)(3, 13, 15, 8, 9)(4, 11, 12, 10, 6), (1, 7)(3, 8)(5, 14)(6, 11)

(10, 12)(13, 15) >≤ 10; as a result the order of the coset stabilizer is

N (1,2,15) = |N |
|N(1,2,15) = 60

10 = 6, so the order of the double coset [1, 2, 15] is 6. Therefore,

the index is now 1 + 15 + 5 + 1 + 30 + 30 + 30 + 6 = 118. The orbits of the coset

[1, 2, 15] are {2}, {4}, {9}, {1, 7}, {3, 8}, {5, 14}, {6, 11}, {10, 12}, {13, 15}. We will pick a

representative from each orbit and right multiply each Mt1t2t15ti, however consider the

following relations:

Mt1t2t15t2 = x−1y2t12t4t1t1t6t11t7

⇒Mt1t2t15t2 = t1t6t11t7 ∈ [1, 6, 2, 9]

(Since {N(t1t6t2t9)
n|n ∈ N} and x−1y2t12t4t1 ∈M),

Mt1t2t15t4 = yx−1y2t12t4t1t10t8t9

⇒Mt1t2t15t4 = t10t8t9 ∈ [1, 2, 15]

(Since {N(t1t2t15)
n|n ∈ N} and yx−1y2t12t4t1 ∈M),

Mt1t2t15t9 = (x ∗ y)2t1t5

⇒Mt1t2t15t9 = t1t5 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and (xy)2 ∈M),

Mt1t2t15t1 = y−1xy2xt13t5t9t1t9t2t15t10

⇒Mt1t2t15t1 = t9t2t15t10 ∈ [1, 6, 2, 9]

(Since {N(t1t6t2t9)
n|n ∈ N} and y−1xy2xt13t5t9t1 ∈M),

Mt1t2t15t3 = (x−1, y−1)t1t2

⇒Mt1t2t15t3 = t14t5 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and (x−1, y−1) ∈M),

Mt1t2t15t5 = y−1xyxy−2xt13t3t9t14t12t6t1

⇒Mt1t2t15t5 = t14t12t6t1 ∈ [1, 6, 2, 9]

(Since {N(t1t6t2t9)
n|n ∈ N} and y−1xyxy−2xt13t3t9 ∈M),

Mt1t2t15t6 = x2y−1x−1t12t14t8t1t12t15t8
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⇒Mt1t2t15t6 = t12t15t8 ∈ [1, 2, 15]

(Since {N(t1t2t15)
n|n ∈ N} and x2y−1x−1t12t14t8t1 ∈M),

Mt1t2t15t10 = y−3x2yt3t13t15t8t13t2

⇒Mt1t2t15t10 = t8t13t15 ∈ [1, 2, 15]

(Since {N(t1t2t15)
n|n ∈ N} and y−3x2yt3t13t15 ∈M),

Mt1t2t15t15 = Mt1t2,∈ [1, 2] (2 single cosets loop back to [1, 2]).

N t1t7t4 N

We will continue by exploring the potential double cosets proposed from the or-

bits of the double coset [1, 7, 4]. We identify that the orbits are {1, 7, 4}, {2, 5, 8}, {3, 7, 11},
{6, 9, 15}, {12, 14, 13}, and follow by performing right multiplication on Mt1t7t4ti′s. Do-

ing so could produce potential double cosets [1, 7, 4, 4], [1, 7, 4, 2], [1, 7, 4, 3], [1, 7, 4, 6],

[1, 7, 4, 12]; however, we first must consider the following relations:

Mt1t7t4t4 = Mt1t7,∈ [1, 7] (3 single cosets loop back to [1, 7]),

Mt1t7t4t2 = yx2yxy−1t12t6t2t7t5t12

⇒Mt1t7t4t2 = t7t5t12 ∈ [1, 7, 4]

(Since {N(t1t7t4)
n|n ∈ N} and yx2yxy−1t12t6t2 ∈M),

Mt1t7t4t3 = x2y−1x−1yt14t10t4t13t14t8

⇒Mt1t7t4t3 = t13t14t8 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and x2y−1x−1yt14t10t4 ∈M),

Mt1t7t4t6 = y−3x−1y−1x−1t4t12t9t14t13t6t9

⇒Mt1t7t4t6 = t13t6t9 ∈ [1, 7, 2]

(Since {N(t1t7t2)
n|n ∈ N} and y−3x−1y−1x−1t4t12t9t14 ∈M),

Mt1t7t4t12 = yxy−2t11t10t1t7t11t2

⇒Mt1t7t4t12 = t7t11t2 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and yxy−2t11t10t1 ∈M).

Notice that there are no new double cosets. The single cosets from the orbits {3, 7, 11}
and {12, 13, 14} continue to the double coset [1, 6, 2], and the single cosets form {2, 5, 8}
and {6, 9, 15} move to the double cosets [1, 7, 4] and [1, 7, 2] respectively. While the or-

bit representative from the potentially new double coset [1, 7, 4, 4] would obviously loop

back to [1, 7]. The order of the coset stabilizing group of the coset [1, 7, 4] is generated

by N (1,7,4) ≤< (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13),
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(2, 5)(3, 13)(4, 10)(7, 14)(9, 15)(11, 12)(10, 12)(13, 15) >≤ 6; thus the order of the coset

stabilizer is N (1,7,4) = |N |
|N(1,7,4) = 60

6 = 10. Therefore, the index is now 1 + 15 + 5 + 1 +

30 + 30 + 30 + 6 + 10 = 128.

N t1t7t2 N

We will continue by exploring the potential double cosets proposed from the or-

bits of the double coset [1, 7, 2]. We identify that the orbits are {1}, {6}, {8}, {2, 11}, {3, 4},
{5, 12}, {7, 9}, {10, 13}, {14, 15}, and follow by performing right multiplication on

Mt1t7t2ti′s. Doing so could produce potential double cosets [1, 7, 2, 1], [1, 7, 2, 6], [1, 7, 2, 8],

[1, 7, 2, 2], [1, 7, 2, 3] [1, 7, 2, 5], [1, 7, 2, 7] [1, 7, 2, 10], and[1, 7, 2, 14]; however, we first

must consider the following relations:

Mt1t7t2t1 = x−1yx−1yt9t3t13t11t12

⇒Mt1t7t2t1 = t11t12 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and x−1yx−1yt9t3t13 ∈M),

Mt1t7t2t6 = xyx−1t8t14t1t13t12t8t3

⇒Mt1t7t2t6 = t12t8t3 ∈ [1, 7, 2]

(Since {N(t1t7t2)
n|n ∈ N} and xyx−1t8t14t1t13 ∈M),

Mt1t7t2t8 = yx3yxyt9t14t11t12t9t5

⇒Mt1t7t2t8 = t12t9t5 ∈ [1, 7, 4]

(Since {N(t1t7t4)
n|n ∈ N} and yx3yxyt9t14t11 ∈M),

Mt1t7t2t2 = Mt1t7,∈ [1, 7] (2 single cosets loop back to [1, 7]),

Mt1t7t2t3 = yx
−1
yx−1yt2t13t1t9t1t11

⇒Mt1t7t2t3 = t9t1t11 ∈ [1, 7, 2]

(Since {N(t1t7t2)
n|n ∈ N} and yx

−1
yx−1yt2t13t1 ∈M),

Mt1t7t2t5 = xy2xyt7t8t14t15t14t8

⇒Mt1t7t2t5 = t1t7t4 ∈ [1, 7, 4]

(Since {N(t1t7t4)
n|n ∈ N} and xy2xyt7t8t14 ∈M),

Mt1t7t2t10 = xyx3yxt6t12t7t2t8

⇒Mt1t7t2t10 = t2t8 ∈ [1, 7]

(Since {N(t1t7)
n|n ∈ N} and xyx3yxt6t12t7 ∈M),

Mt1t7t2t14 = xy−3x2t11t14t9t3t10t8

⇒Mt1t7t2t14 = t3t10t8 ∈ [1, 7]

(Since {N(t1t7t2)
n|n ∈ N} and xy−3x2t11t14t9 ∈M).
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There were no new double cosets. By right multiplying by a orbit representative, all

potentially new double cosets either mapped back to [1, 7], looped back onto [1, 7, 2], or

continued on to [1, 7, 4]. The order of the coset stabilizing group of the coset [1, 7, 2] is

generated by N (1,7,2) ≤< (1, 2, 10, 13, 11)(3, 6, 4, 15, 14)(5, 12, 7, 8, 9),

(2, 11)(3, 4)(5, 12)(7, 9)(10, 13)(14, 15) >≤ 10; thus the order of the coset stabilizer is

N (1,7,2) = |N |
|N(1,7,2) = 60

10 = 6. Therefore, the index is now 1 + 15 + 5 + 1 + 30 + 30 + 30 +

6 + 10 + 6 = 134.

N t1t6t2t9 N

We have finally reached our last double coset, which is [1, 6, 2, 9]. Just as before,

we will need to find the point stabilizer, N1,6,2,9, and the coset stabilizing group N (1,6,2,9)

to calculate the single cosets that live in [1, 6, 2, 9]. The order of the coset stabilizing

group is, N (1,6,2,9) ≤< (1, 2)(3, 15)(4, 6)(5, 7)(8, 9)(10, 11), (1, 6, 8)(2, 9, 4)(3, 12, 15)

(5, 7, 13)(10, 11, 14)) >≤ 6. So the order of the coset stabilizer is N (1,6,2,9) = |N |
|N(1,6) =

60
6 = 10, thus the order the double coset [1, 6, 2, 9] contains is 10 single cosets. The index

is now 1 + 15 + 5 + 1 + 30 + 30 + 30 + 6 + 10 + 6 + 10 = 144; and we have finally reached

our maximum number for our index, recall this came from the order of G divided by

M . The orbits of the coset [1, 6, 2, 9] are {1, 6, 8}, {2, 9, 4}, {3, 12, 15}, {5, 7, 13},
{10, 11, 14}, we will pick a representative from each orbit and right multiply, Mt1t6t2t9ti:

Mt1t6t2t9t1 = xy−1xy−1xyt12t7t15t9t2t13

⇒Mt1t6t2t9t1 = t9t2t13 ∈ [1, 6, 2]

(Since {N(t1t6t2)
n|n ∈ N} and xy−1xy−1xyt12t7t15 ∈M),

Mt1t6t2t9t9 = Mt1t6t2,∈ [1, 6, 2] (3 single cosets loop back to [1, 7]),

Mt1t6t2t9t3 = y−1x−1t5t4

⇒Mt1t6t2t9t3 = t5t4 ∈ [1, 2]

(Since {N(t1t2)
n|n ∈ N} and y−1x−1 ∈M),

Mt1t6t2t9t5 = xyx−1y2t12t4t1t13t14t11t7

⇒Mt1t6t2t9t5 = t13t14t11t7 ∈ [1, 6, 2, 9]

(Since {N(t1t6t2t9)
n|n ∈ N} and xyx−1y2t12t4t1 ∈M),

Mt1t6t2t9t10 = x−1yx−1yxt15t8t9t3t12t6

⇒Mt1t6t2t9t10 = t3t12t6 ∈ [1, 2, 15]

(Since {N(t1t2t15)
n|n ∈ N} and x−1yx−1yxt15t8t9 ∈M).

Due to the fact that our group is closed under right multiplication of tis, we have
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completed our double coset enumeration of G over M , refer to the Cayley graph below.
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Figure 3.3: Cayley Graph of L2(31)
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Figure 3.4: Cayley Graph of M12 Over L2(11)
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Chapter 4

Monomial Progenitors

4.1 Monomial Presentation of 5∗6 :m S5

G = S5 is generated by xx and yy, where xx = (1, 2, 3, 4, 5), and yy = (1, 2).

The conjugacy classes of group G are

C1 = Id(G),

C2 = (1, 2),

C3 = (1, 2)(3, 4),

C4 = (1, 2, 3).

C5 = (1, 2, 3, 4).

C6 = (1, 2, 3, 4, 5).

C7 = (1, 2, 3)(4, 5).

Consider the subgroup H of G given below.

H = Id(G), (2, 5, 3, 4), (2, 3)(4, 5), (1, 4, 3, 2, 5).

The conjugacy classes of H are

D1 = Id(G),

D2 = (1, 3)(2, 5),

D3 = (1, 2, 3, 5),

D4 = (1, 4, 3, 2, 5).
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Consider the irreducible characters φ (of H) and φG (of G) given below.

Class D1 D2 D3 D4 D5

Size 1 5 5 5 4
Representative Id(G) (1, 3)(2, 5) (1, 2, 3, 5) (1, 5, 3, 2) (1, 4, 3, 2, 5)

φ 1 -1 -I I 1
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Class C1 C2 C3 C4 C5 C6 C7

Size 1 10 15 20 30 24 20
Representative Id(G)(1, 2) (1, 2)(3, 4)(1, 2, 3) (1, 2, 3, 4)(1, 2, 3, 4, 5) (1, 3, 2)(4, 5)

φG 6 0 -2 0 0 1 0

Now we will induce the character φ = χ.3 of H up to χ.7 of G to obtain the

character φG of G

φ ↑GH

φGα = n
hα

∑
w∈H∩Cα φ(w), where n = |G|

|H| = 120
20 = 6.

φG1 = 6
1

∑
w∈H∩C1

φ(w)

So, φG1 = 6(φ(1)) = 6(1) = 6.

φG2 = 6
10

∑
w∈H∩C2

φ(w)

So, φG2 = 3
5(φ(0) = 3

5(0) = 0.

φG3 = 6
15

∑
w∈H∩C3

φ(w)

So, φG3 = 2
5(5φ(1, 3)(2, 5)) = 2

5(5)(−1) = 2
5(−5) = −2.

φG4 = 6
20

∑
w∈H∩C4

φ(w)

So, φG4 = 3
10(φ(0)) = 3

4(0) = 0.
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φG5 = 6
30

∑
w∈H∩C5

φ(w)

So, φG5 = 1
5(φ(0)) = 1

5(0) = 0.

φG6 = 6
24

∑
w∈H∩C6

φ(w)

So, φG6 = 1
4(φ(1, 4, 3, 2, 5)) = 1

4(4)(1) = 1.

φG7 = 6
20

∑
w∈H∩C7

φ(w)

So, φG7 = 3
10(φ(0)) = 3

4(0) = 0.

φ ↑GH= 6, 0,−2, 0, 0, 1, 0.

Now to show the monomial representation has the generators

A(xx) =



0 1 0 0 0 0

0 0 0 1 0 0

3 0 0 0 0 0

0 0 0 0 0 3

0 0 0 0 1 0

0 0 4 0 0 0


and A(yy) =



0 0 4 0 0 0

0 0 0 0 1 0

4 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0


.

G = He ∪H(1, 2, 3, 4, 5) ∪H(1, 3, 2, 5) ∪H(1, 3, 5, 2, 4) ∪H(2, 3, 4, 5) ∪H(1, 5, 2, 3)

Let t1 = e, t2 = (1, 2, 3, 4, 5), and t3 = (1, 3, 2, 5), t4 = (1, 3, 5, 2, 4), t5 = (2, 3, 4, 5),

t6 = (1, 3, 2, 5).
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Then

A(xx) =



φ(t1xt
−1
1 ) φ(t1xt

−1
2 ) φ(t1xt

−1
3 ) φ(t1xt

−1
4 ) φ(t1xt

−1
5 ) φ(t1xt

−1
6 )

φ(t2xt
−1
1 ) φ(t2xt

−1
2 ) φ(t2xt

−1
3 ) φ(t2xt

−1
4 ) φ(t2xt

−1
5 ) φ(t2xt

−1
6 )

φ(t3xt
−1
1 ) φ(t3xt

−1
2 ) φ(t3xt

−1
3 ) φ(t3xt

−1
4 ) φ(t3xt

−1
5 ) φ(t3xt

−1
6 )

φ(t4xt
−1
1 ) φ(t4xt

−1
2 ) φ(t4xt

−1
3 ) φ(t4xt

−1
4 ) φ(t4xt

−1
5 ) φ(t4xt

−1
6 )

φ(t5xt
−1
1 ) φ(t5xt

−1
2 ) φ(t5xt

−1
3 ) φ(t5xt

−1
4 ) φ(t5xt

−1
5 ) φ(t5xt

−1
6 )

φ(t6xt
−1
1 ) φ(t6xt

−1
2 ) φ(t6xt

−1
3 ) φ(t6xt

−1
4 ) φ(t6xt

−1
5 ) φ(t6xt

−1
6 )



Row 1

φ(t1xt
−1
1 ) = φ(t1(1, 2, 3, 4, 5)t−11 = φ(1, 2, 3, 4, 5) = 0

φ(t1xt
−1
2 ) = φ(t1(1, 2, 3, 4, 5)t−12 = φ((1, 2, 3, 4, 5)(1, 2, 3, 4, 5)−1) = 1

φ(t1xt
−1
3 ) = φ(t1(1, 2, 3, 4, 5)t−13 = φ((1, 2, 3, 4, 5)(1, 5, 2, 3)) = φ(1, 3, 4, 2) = 0

φ(t1xt
−1
4 ) = φ(t1(1, 2, 3, 4, 5)t−14 = φ((1, 2, 3, 4, 5)(1, 4, 2, 5, 3)) = φ(1, 5, 4, 3, 2) = 0

φ(t1xt
−1
5 ) = φ(t1(1, 2, 3, 4, 5)t−15 = φ((1, 2, 3, 4, 5)(2, 5, 4, 3)) = φ(1, 5) = 0

φ(t1xt
−1
6 ) = φ(t1(1, 2, 3, 4, 5)t−16 = φ((1, 2, 3, 4, 5)(1, 3, 2, 5)) = φ(1, 5, 3, 4) = 0

Row 2

φ(t2xt
−1
1 ) = φ(t2(1, 2, 3, 4, 5)t−11 = φ((1, 2, 3, 4, 5)(1, 2, 3, 4, 5)) = φ(1, 3, 5, 2, 4) = 0

φ(t2xt
−1
2 ) = φ(t2(1, 2, 3, 4, 5)t−12 = φ((1, 2, 3, 4, 5)(1, 2, 3, 4, 5)(1, 2, 3, 4, 5)−1)

= φ(1, 2, 3, 4, 5) = 0

φ(t2xt
−1
3 ) = φ(t2(1, 2, 3, 4, 5)t−13 = φ((1, 2, 3, 4, 5)(1, 2, 3, 4, 5)(1, 5, 2, 3))

= φ(2, 4, 5, 3) = 0

φ(t2xt
−1
4 ) = φ(t2(1, 2, 3, 4, 5)t−14 = φ((1, 3, 5, 2, 4)(1, 4, 2, 5, 3))

= φ((1)(2)(3)(4)(5)) = 1

φ(t2xt
−1
5 ) = φ(t2(1, 2, 3, 4, 5)t−15 = φ((1, 3, 5, 2, 4)(2, 5, 4, 3)) = φ(1, 2, 3, 4) = 0

φ(t2xt
−1
6 ) = φ(t2(1, 2, 3, 4, 5)t−16 = φ((1, 3, 5, 2, 4)(1, 3, 2, 5)) = φ(1, 2, 4, 3) = 0
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Row 3

φ(t3xt
−1
1 ) = φ(t3(1, 2, 3, 4, 5)t−11 = φ((1, 3, 2, 5)(1, 2, 3, 4, 5)) = φ(1, 4, 5, 2) = 3

φ(t3xt
−1
2 ) = φ(t3(1, 2, 3, 4, 5)t−12 = φ((1, 3, 2, 5)(1, 2, 3, 4, 5)(1, 5, 4, 3, 2)

= φ(1, 3, 2, 5) = 0

φ(t3xt
−1
3 ) = φ(t3(1, 2, 3, 4, 5)t−13 = φ((1, 3, 2, 5)(1, 2, 3, 4, 5)(1, 5, 2, 3))

= φ(1, 4, 2, 5, 3) = 0

φ(t3xt
−1
4 ) = φ(t3(1, 2, 3, 4, 5)t−14 = φ((1, 3, 2, 5)(1, 2, 3, 4, 5)(1, 4, 2, 5, 3))

= φ(1, 2, 4, 3) = 0

φ(t3xt
−1
5 ) = φ(t3(1, 2, 3, 4, 5)t−15 = φ((1, 3, 2, 5)(1, 2, 3, 4, 5)(2, 5, 4, 3))

= φ(1, 3, 2) = 0

φ(t3xt
−1
6 ) = φ(t3(1, 2, 3, 4, 5)t−16 = φ((1, 3, 2, 5)(1, 2, 3, 4, 5)(1, 3, 2, 5))

= φ(1, 2)(2, 3)) = 0

Row 4

φ(t4xt
−1
1 ) = φ(t4(1, 2, 3, 4, 5)t−11 = φ((1, 3, 5, 2, 4)(1, 2, 3, 4, 5))

= φ(1, 4, 2, 5, 3) = 0

φ(t4xt
−1
2 ) = φ(t4(1, 2, 3, 4, 5)t−12 = φ((1, 3, 5, 2, 4)(1, 2, 3, 4, 5)(1, 5, 4, 3, 2)

= φ(1, 3, 5, 2, 4) = 0

φ(t4xt
−1
3 ) = φ(t4(1, 2, 3, 4, 5)t−13 = φ((1, 3, 5, 2, 4)(1, 2, 3, 4, 5)(1, 5, 2, 3))

= φ(1, 2, 3, 4, 5) = 0

φ(t4xt
−1
4 ) = φ(t4(1, 2, 3, 4, 5)t−14 = φ((1, 3, 5, 2, 4)(1, 2, 3, 4, 5)(1, 4, 2, 5, 3))

= φ(1, 2, 4, 3) = 0

φ(t4xt
−1
5 ) = φ(t4(1, 2, 3, 4, 5)t−15 = φ((1, 3, 5, 2, 4)(1, 2, 3, 4, 5)(2, 5, 4, 3))

= φ(1, 3)(2, 4, 5)) = 0

φ(t4xt
−1
6 ) = φ(t4(1, 2, 3, 4, 5)t−16 = φ((1, 3, 5, 2, 4)(1, 2, 3, 4, 5)(1, 3, 2, 5))

= φ((1, 4, 5, 2)(3)) = −2 = 3

Row 5

φ(t5xt
−1
1 ) = φ(t5(1, 2, 3, 4, 5)t−11 = φ((2, 3, 4, 5)(1, 2, 3, 4, 5)) = φ((1, 2, 4)(3, 5)) = 0

φ(t5xt
−1
2 ) = φ(t5(1, 2, 3, 4, 5)t−12 = φ((2, 3, 4, 5)(1, 2, 3, 4, 5)(1, 5, 4, 3, 2))
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= φ((1)(2, 3, 4, 5)) = 0

φ(t5xt
−1
3 ) = φ(t5(1, 2, 3, 4, 5)t−13 = φ((2, 3, 4, 5)(1, 2, 3, 4, 5)(1, 5, 2, 3))

= φ(1, 3, 2, 4, 5) = 0

φ(t5xt
−1
4 ) = φ(t5(1, 2, 3, 4, 5)t−14 = φ((2, 3, 4, 5)(1, 2, 3, 4, 5)(1, 4, 2, 5, 3))

= φ((1, 5)(2)(3)(4)) = 0

φ(t5xt
−1
5 ) = φ(t5(1, 2, 3, 4, 5)t−15 = φ((2, 3, 4, 5)(1, 2, 3, 4, 5)(2, 5, 4, 3))

= φ(1, 5, 2, 3, 4) = 1

φ(t5xt
−1
6 ) = φ(t5(1, 2, 3, 4, 5)t−16 = φ((2, 3, 4, 5)(1, 2, 3, 4, 5)(1, 3, 2, 5))

= φ(1, 5, 2, 4, 3) = 0

Row 6

φ(t6xt
−1
1 ) = φ(t6(1, 2, 3, 4, 5)t−11 = φ((1, 5, 2, 3)(1, 2, 3, 4, 5)) = φ(2, 4, 5, 3) = 0

φ(t6xt
−1
2 ) = φ(t6(1, 2, 3, 4, 5)t−12 = φ((1, 5, 2, 3)(1, 2, 3, 4, 5)(1, 5, 4, 3, 2))

= φ((4)(1, 5, 2, 3)) = 0

φ(t6xt
−1
3 ) = φ(t6(1, 2, 3, 4, 5)t−13 = φ((1, 5, 2, 3)(1, 2, 3, 4, 5)(1, 5, 2, 3))

= φ((1, 5)(2, 4)(3)) = −1 = 4

φ(t6xt
−1
4 ) = φ(t6(1, 2, 3, 4, 5)t−14 = φ((1, 5, 2, 3)(1, 2, 3, 4, 5)(1, 4, 2, 5, 3))

= φ((2)(1, 4, 3, 5)) = 0

φ(t6xt
−1
5 ) = φ(t6(1, 2, 3, 4, 5)t−15 = φ((1, 5, 2, 3)(1, 2, 3, 4, 5)(2, 5, 4, 3))

= φ(2, 3, 5) = 0

φ(t6xt
−1
6 ) = φ(t6(1, 2, 3, 4, 5)t−16 = φ((1, 5, 2, 3)(1, 2, 3, 4, 5)(1, 3, 2, 5))

= φ(1, 3, 5, 2, 4) = 0

=



0 1 0 0 0 0

0 0 0 1 0 0

3 0 0 0 0 0

0 0 0 0 0 3

0 0 0 0 1 0

0 0 4 0 0 0


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A(yy) =



φ(t1yt
−1
1 ) φ(t1yt

−1
2 ) φ(t1yt

−1
3 ) φ(t1yt

−1
4 ) φ(t1yt

−1
5 ) φ(t1yt

−1
6 )

φ(t2yt
−1
1 ) φ(t2yt

−1
2 ) φ(t2yt

−1
3 φ(t2yt

−1
4 ) φ(t2yt

−1
5 ) φ(t2yt

−1
6 ))

φ(t3yt
−1
1 ) φ(t3yt

−1
2 ) φ(t3yt

−1
3 ) φ(t3yt

−1
4 ) φ(t3yt

−1
5 ) φ(t3yt

−1
6 )

φ(t4yt
−1
1 ) φ(t4yt

−1
2 ) φ(t4yt

−1
3 ) φ(t4yt

−1
4 ) φ(t4yt

−1
5 ) φ(t4yt

−1
6 )

φ(t5yt
−1
1 ) φ(t5yt

−1
2 ) φ(t5yt

−1
3 ) φ(t5yt

−1
4 ) φ(t5yt

−1
5 ) φ(t5yt

−1
6 )

φ(t6yt
−1
1 ) φ(t6yt

−1
2 ) φ(t6yt

−1
3 ) φ(t6yt

−1
4 ) φ(t6yt

−1
5 ) φ(t6yt

−1
6 )



=



0 0 4 0 0 0

0 0 0 0 1 0

4 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0


.

Now to find a permutation representation of A(xx) and A(yy) of the monomial rep-

resentation.

A(xx) =



0 1 0 0 0 0

0 0 0 1 0 0

3 0 0 0 0 0

0 0 0 0 0 3

0 0 0 0 1 0

0 0 4 0 0 0



thus a12 = 1, a24 = 1, a31 = 3, a46 = 3, a55 = 1, a63 = 4.

Therefore,

t1 → t2,
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t2 → t4,

t3 → t31.

t4 → t36,

t5 → t5,

t6 → t43.

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4 t5 t6 t21 t22 t23 t24 t25 t26
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t2 t4 t31 t36 t5 t43 t22 t24 t1 t6 t25 t33
2 4 13 18 5 21 8 10 1 6 11 15

(continued)

13 14 15 16 17 18 19 20 21 22 23 24

t31 t32 t33 t34 t35 t36 t41 t42 t43 t44 t45 t46
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t32 t34 t41 t46 t35 t23 t42 t44 t21 t26 t45 t13
14 16 19 24 17 9 20 22 7 12 23 3

Therefore, A(xx) = (1, 2, 4, 18, 9)(3, 13, 14, 16, 24)(5)

(6, 21, 7, 8, 10)(11)(17)(23)(12, 15, 19, 20, 22).

Similarly for A(yy),

A(yy) =



0 0 4 0 0 0

0 0 0 0 1 0

4 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0


.

thus a13 = 4, a25 = 1, a31 = 4, a46 = 1, a52 = 1, a64 = 1.

Therefore,

t1 → t43,

t2 → t5,



86

t3 → t41.

t4 → t6,

t5 → t2,

t6 → t4.

1 2 3 4 5 6 7 8 9 10 11 12

t1 t2 t3 t4 t5 t6 t21 t22 t23 t24 t25 t26
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t43 t5 t41 t6 t2 t4 t33 t25 t31 t26 t22 t24
21 5 19 6 2 4 15 11 13 12 8 10

(continued)

13 14 15 16 17 18 19 20 21 22 23 24

t31 t32 t33 t34 t35 t36 t41 t42 t43 t44 t45 t46
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
t23 t35 t21 t36 t32 t34 t3 t45 t1 t46 t42 t44
9 17 7 18 14 16 3 23 1 24 20 22

Therefore, A(yy) = (1, 21)(2, 5)(3, 19)(4, 6)(7, 15)(8, 11)

(12, 10)(13, 9)(14, 17)(16, 18)(20, 23)(24, 22).

Now we will built presentation of the monomial progenitor 5∗6 :m S5; we know

that the presentation for S5 is < x, y|x5, y2, (x−1y)4, (xyx−2yx)2 >.

We need to find the Normaliser{t1, t21, t31, t41}.
And we chose for this set to map to 1, 7, 13, 19 respectively in the table above.

Stabiliser(N, {1, 7, 13, 19}) = (2, 22, 11, 12, 9)(3, 14, 10, 5, 6)(4, 17, 18, 15, 20)

(8, 16, 23, 24, 21),

and (1, 13, 19, 7)(2, 21, 4, 5)(3, 22, 23, 20)(6, 12, 24, 18)(8, 15, 10, 11)(9, 16, 17, 14).
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Therefore, t1’s commute with (1, 13, 19, 7)(2, 21, 4, 5)(3, 22, 23, 20)

(6, 12, 24, 18)(8, 15, 10, 11)(9, 16, 17, 14).

Thus, our presentation is

< x, y, t|x5, y2, (x−1 ∗ y)4, (x ∗ y ∗ x−2 ∗ y ∗ x)2, t5, (t, x2 ∗ y ∗ x ∗ y), t(x
−1y) = t3 >.

Now we can add relations and find finite homomorphic images.
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Chapter 5

Extension Problems

5.1 G ∼= L2(31)
•2

We produced this group G1 from the progenitor written of Symmetric Group

15, we added relations and left it running in the background with the help of NANO.

The powers of the relations are now the parameters of the group G. Thus we have

r1 := 0; r2 := 0; r3 := 0; r3 := 0; r4 := 0; r5 := 4; r6 := 0; r7 := 10; r8 := 3;

G < x, y, z, t >:= Group < x, y, z, t|y2, z3, (x−1y)2, (x, z), (yz−1)2, x−5, t2, (t, yxz),

(yt)r1, (xt)r2, (xzt)r3, (zx−1t)r4, (zt)r5, (x2t)r6, (x2z−1t)r7, (x2zt)r8 > . Let’s us now dis-

regard the parameters with are being set equal to zero; G =< x, y, z, t|y2, z3, (x−1y)2,

(x, z), (yz−1)2, x−5, t2, (t, yxz), (zt)4, (x2z−1t)10, (x2zt)3 >, this will be the representa-

tion that we will prove in this isomorphism type. The finite representation of G1 is

made up of the composition factors below,

> CompositionFactors(G1);
G
| A(1, 31) = L(2, 31)

*
| Cyclic(2)
1 *

and the composition series of G is
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G = G0 ⊇ G1 ⊇ G2 where G2 = 1,

and the composition factors are,

G = (G0/G1)(G1/G2)

= (G0/G1)(G1)

= L(2, 31)C2.

Our goal is to solve the extension problem. Based on the compositions series it is going

to come down to a type of association between the two subgroups of G1, which are Cyclic

Group 2, which we will refer to as C2, and Linear Group 2,31, denoted PSL(2, 31) or

L(2, 31). To initiate, we usually start off by looking for a largest abelian group to factor

by, however, lets us try a different (if at all possible) approach- lets start off by asking

MAGMA if the group G1 has a center.

>Center(G1);
Permutation group acting on a set of cardinality 992
Order = 2*

Great, we see that this group G1 has a center that we can factor by. This

starting point can be executed with any group, however, not every group will have a

center, then our next attempt would have to be to look for a largest abelian group

within G1. Secondly, let’s consider the make up, or normal lattice of the group,

> NL:=NormalLattice(G1);
> NL;

Normal subgroup lattice
-----------------------
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[4] Order 29760 Length 1 Maximal Subgroups: 2 3
---
[3] Order 14880 Length 1 Maximal Subgroups: 1
---
[2] Order 2 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

We see here that we have a factor or order 2 which MAGMA labeled as NL[2],

surely this is our center of order 2. Following this, we want to separate this subgroup

of order 2 from the rest of G1, so we would factor G1 by NL[2]

> q,ff:=quo<G1|NL[2]>;
> q;
Permutation group q acting on a set of cardinality 496
Order = 14880 = 2ˆ5 * 3 * 5 * 31

By looking at our composition factors of G1, we can already begin to assume

that our new subgroup q is L2(31), nevertheless, we must prove that is is so,

> IsIsomorphic(q,PSL(2,31));
true Homomorphism of GrpPerm: q, Degree 496,
Order 2ˆ5 * 3 * 5 * 31 into
GrpPerm: $, Degree 32, Order 2ˆ5 * 3 * 5 * 31 induced by...

There are three generators of our quotient group q; however, the generators are very large

to include in this document, but this can easily be done with the code Generators(q).

To write the presentation of the isomorphism type, we must produce a presentation of

q, with the generators a,b,c,d.

> FPGroup(q);
Finitely presented group on 4 generators
Relations

$.1ˆ5 = Id($)
$.2ˆ2 = Id($)
$.3ˆ3 = Id($)
$.4ˆ2 = Id($)
($.1ˆ-1 * $.2)ˆ2 = Id($)
($.1, $.3) = Id($)
($.2 * $.3ˆ-1)ˆ2 = Id($)
$.4 * $.3ˆ-1 * $.4 * $.1ˆ-1 * $.2 * $.4 * $.3 = Id($)
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$.1 * $.4 * $.3ˆ-1 * $.2 * $.1 * $.4 * $.2 * $.3 = Id($)
($.1ˆ-1 * $.4 * $.2 * $.4 * $.2)ˆ2 = Id($)
$.1ˆ-1 * $.4 * $.3ˆ-1 * $.4 * $.3ˆ-1 * $.1ˆ2 * $.4 * $.1 *
$.2 * $.4 *
$.1ˆ-1 = Id($)
$.1ˆ-1 * $.4 * $.1ˆ-1 * $.4 * $.1 * $.4 * $.3ˆ-1 * $.1 *
$.4 * $.1 * $.4 *
$.1ˆ-1 * $.4 * $.3 = Id($)

bˆ2,
cˆ3,
dˆ2,
(aˆ{-1} * b)ˆ2,
(a, c),
(b * cˆ{-1)ˆ2,
d * cˆ-1 * d * aˆ-1 * b * d * c,
a * d * cˆ-1 * b * a * d * b * c,
(aˆ-1 * d * b * d * b)ˆ2,
aˆ-1 * d * cˆ-1 * d * cˆ-1 * aˆ2 * d * a * b * d *
aˆ-1,
aˆ-1 * d * aˆ-1 * d * a * d * cˆ-1 * a * d * a * d *
aˆ-1 * d * c.

We translated the code from MAGMA which was given using dollar signs and

numbers to represent the words a, b, c, and d. Reason being that we reserve the ending

of the alphabet when building our progenitor for a group; therefore we use the beginning

of the alphabet when proving the isomorphic type or our homomorphic finite image of

our group G1. So that we have, a5, b2, c3, d2, (a−1b)2, (a, c), (bc−1)2,

dc−1da−1bdc, adc−1badbc, (a−1dbdb)2, a−1dc−1dc−1a2dabda−1, a−1da−1dadc−1adada−1dc

as our presentation for q. Next, to find the generators of C2, we will first identify the

generators of NL[2] and store it as e. We will name the prsentation of the isomorphism

type H. Lastly, every generator of q must commute with e, and this addition is added

to the end of presentation for q, thus we have:

> H<a,b,c,d,e>:=Group<a,b,c,d,e|aˆ5,bˆ2,cˆ3,dˆ2,(aˆ-1 * b)ˆ2,
> (a, c),(b*cˆ-1)ˆ2,d*cˆ-1*d*aˆ-1*b*d*c,a*d*cˆ-1*b*a*d*b*c,
> (aˆ-1*d*b*d*b)ˆ2,aˆ-1*d*cˆ-1*d*cˆ-1*aˆ2*d*a*b*d* aˆ-1,
> aˆ-1*d*aˆ-1*d*a*d*cˆ-1*a*d*a*d*aˆ-1*d*c,
> eˆ2,(a,e), (b,e), (c,e), (d,e)>;
> f,H1,k:=CosetAction(H,sub<H|Id(H)>);
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> s,t:=IsIsomorphic(G1,H1);
> s;
true
> t;
Homomorphism of GrpPerm: G1, Degree 992, Order 2ˆ6 * 3 * 5 * 31
into GrpPerm:
H1, Degree 29760, Order 2ˆ6 * 3 * 5 * 31 induced by

As we can see above, we solved this extension problem by verifying that H is isomorphic

to G1. Therefore we have proved 2•L(2, 31) is the isomorphism type of G1.

5.2 G ∼= A(5) : 2
4

Consider the following finite homomorphic image,

G =< x, y, t|x5, y3, (xy−1x)2, t2, (y, t), ((x−1, y−1), t), (yx−1t)5, (xyx−1y−1xyt)4 >, of which

we will prove its isomorphism type. The finite representation of G1 is made up of the

composition factors below,

> CompositionFactors(G1);
G
| Alternating(5)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1

and the composition series of G is

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊇ G5 where G5 = 1,

and the composition factors are,
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G = (G0/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5)

= Alt(5)C2C2C2C2.

Let us now review the normal lattice, and follow by factoring by the largest

abelian group,

> NL:=NormalLattice(G1);
> NL;

Normal subgroup lattice
-----------------------

[3] Order 960 Length 1 Maximal Subgroups: 2
---
[2] Order 16 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

> for i in [1..#NL] do if IsAbelian(NL[i]) then i;
> end if; end for;
1
2.

By observing the code above, we see that the largest abelian subgroup of G1 is NL[2],

we will thus proceed by factoring by the largest abelian group,

> q,ff:=quo<G1|NL[2]>;
> q;
Permutation group q acting on a set of cardinality 6
Order = 60 = 2ˆ2 * 3 * 5

(2, 3, 5, 4, 6)
(1, 2, 4)(3, 5, 6)
Id(q).

As a result, we have now divided the group G1 into two, where on one hand we have q

and on the other NL[2]. Consider the subgroup NL[2] of order 16, could this consist
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of the string of cyclic groups that were shown in the composition factors? We would

answer this questions with the help of MAGMA, examine the following code,

> X:=[2,2,2,2];
> IsIsomorphic(NL[2],AbelianGroup(GrpPerm,X));
true Mapping from: GrpPerm: $, Degree 16, Order 2ˆ4 to GrpPerm:
$, Degree 8, Order 2ˆ4
Composition of Mapping from: GrpPerm: $, Degree 16, Order 2ˆ4
to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: $, Degree 8, Order 2ˆ4

thus we have proven that NL[2] is four Cyclic Group (2), meaning C2
4. The order of

q is 60 similarly to Alt(5) which is also listed in the composition factors above, let us

verify to see if indeed this is correct:

> IsIsomorphic(q, Alt(5));
true Homomorphism of GrpPerm: q, Degree 6, Order 2ˆ2 * 3 * 5
into GrpPerm: $,
Degree 5, Order 2ˆ2 * 3 * 5 induced by

(2, 3, 5, 4, 6) |--> (1, 2, 4, 3, 5)
(1, 2, 4)(3, 5, 6) |--> (1, 5, 2)
Id(q) |--> Id($)

surely enough q is isomorphic to Alternating Group A5. Finally, we will write a presen-

tation uniting the two subgroups q and NL[2] as a semi-direct product.

To continue we will need to work with transversals, so that we may relate

elements of q that are not in NL[2] to elements in G1, this is done in the code below:

> T:=Transversal(G1,NL[2]);
> NL[2];
Permutation group acting on a set of cardinality 16
Order = 16 = 2ˆ4

Id($)
(1, 2)(3, 6)(4, 8)(5, 9)(7, 11)(10, 12)(13, 16)(14, 15)
(1, 3)(2, 6)(4, 14)(5, 10)(7, 13)(8, 15)(9, 12)(11, 16)
(1, 5)(2, 9)(3, 10)(4, 16)(6, 12)(7, 15)(8, 13)(11, 14)
(1, 7)(2, 11)(3, 13)(4, 12)(5, 15)(6, 16)(8, 10)(9, 14)

> C:=G1!(1, 2)(3, 6)(4, 8)(5, 9)(7, 11)(10, 12)(13, 16)(14, 15);
> D:=G1!(1, 3)(2, 6)(4, 14)(5, 10)(7, 13)(8, 15)(9, 12)(11, 16);
> E:=G1!(1, 5)(2, 9)(3, 10)(4, 16)(6, 12)(7, 15)(8, 13)(11, 14);



95

> I:=G1!(1, 7)(2, 11)(3, 13)(4, 12)(5, 15)(6, 16)(8, 10)(9, 14);
> q.1;
(2, 3, 5, 4, 6)
> q.2;
(1, 2, 4)(3, 5, 6)
> q.3;
Id(q)
> ff(T[2]) eq q.1;
true
> ff(T[3]) eq q.2;
true
> A:=G1!T[2];
> B:=G1!T[3];

we have also found appropriate representations of the generators in q which we will label

a and b, and the names of the generators of NL[2] will be c, d, e and i. The quality

that makes semi-direct products special in the presentation is that we will raise all the

generators of NL[2] to the power of generators of q, meaning we are left to answer the

following: ca =?, da =?, ea =?, ia =?, cb =?, db =?, eb =?, ib =?. We turned to MAGMA

for help consider the following code:

> CˆA;
(1, 3)(2, 6)(4, 14)(5, 10)(7, 13)(8, 15)(9, 12)(11, 16)
> CˆA eq D;
true
> DˆA;
(1, 5)(2, 9)(3, 10)(4, 16)(6, 12)(7, 15)(8, 13)(11, 14)
> DˆA eq E;
true
> EˆA;
(1, 7)(2, 11)(3, 13)(4, 12)(5, 15)(6, 16)(8, 10)(9, 14)
> EˆA eq I;
true
> IˆA;
(1, 4)(2, 8)(3, 14)(5, 16)(6, 15)(7, 12)(9, 13)(10, 11)
> for i,j,k,l in [1..4] do if IˆA eq Cˆi*Dˆj*Eˆk*Iˆl then
> i,j,k,l; end if; end\
for;

1 1 1 1
1 1 1 3
1 1 3 1
1 1 3 3
1 3 1 1
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1 3 1 3
1 3 3 1
1 3 3 3
3 1 1 1
3 1 1 3
3 1 3 1
3 1 3 3
3 3 1 1
3 3 1 3
3 3 3 1
3 3 3 3
> CˆB;
(1, 2)(3, 6)(4, 8)(5, 9)(7, 11)(10, 12)(13, 16)(14, 15)
> CˆB eq C;
true
> DˆB;
(1, 3)(2, 6)(4, 14)(5, 10)(7, 13)(8, 15)(9, 12)(11, 16)
> DˆB eq D;
true
> EˆA;
(1, 7)(2, 11)(3, 13)(4, 12)(5, 15)(6, 16)(8, 10)(9, 14)
> for i,j,k,l in [1..4] do if EˆB eq Cˆi*Dˆj*Eˆk*Iˆl then
> i,j,k,l; end if; end\
for;

1 1 1 1
1 1 1 3
1 1 3 1
1 1 3 3
1 3 1 1
1 3 1 3
1 3 3 1
1 3 3 3
3 1 1 1
3 1 1 3
3 1 3 1
3 1 3 3
3 3 1 1
3 3 1 3
3 3 3 1
> IˆB;
(1, 5)(2, 9)(3, 10)(4, 16)(6, 12)(7, 15)(8, 13)(11, 14)
> IˆB eq E;
true
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We now can write a presentation of H, and confirm that it is a semi-direct presentation

of G1.

> H<a,b,c,d,e,i>:=Group<a,b,c,d,e,i|aˆ5, bˆ3, (a*bˆ-1*a)ˆ2,
> cˆ2, dˆ2, eˆ2, iˆ2, (c *d)ˆ2, (c *e)ˆ2, (d *e)ˆ2,
> (c *i)ˆ2, (d *i)ˆ2, (e *i)ˆ2, cˆa=d, dˆa=e, eˆa=i,
> iˆa=c*d*e*i, cˆb=c, dˆb=d, eˆb=c*d*e*i,iˆb=e>;
> f1,H1,k2:=CosetAction(H,sub<H|Id(H)>);
> #H1;
960
> IsIsomorphic(G1,H1);
true Homomorphism of GrpPerm: G1, Degree 16,
Order 2ˆ6 * 3 * 5 into GrpPerm: H1,
Degree 960, Order 2ˆ6 * 3 * 5 induced by...

Therefore, we have proved the isomorphism type of G ∼= Alt(5) : 24.

5.3 G ∼= 22 :• (24 : (32 : 2))

The presentation of G =< x, y, z, t|x2, y3, z3, (y, z), x∗z−1∗x∗z, y−1∗x∗y−1∗
x ∗ z, t2, (t, z ∗ y−1), (y ∗ z ∗ tx)3, (x ∗ y ∗ t)6 >

has the composition factors

> CompositionFactors(G1);
G
| Cyclic(2)

*
| Cyclic(3)

*
| Cyclic(3)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1
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and the composition series of G is

G = G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ G4 ⊃ G5 ⊇ G6 ⊇ G7 ⊇ G8 ⊇ G9 where G9 = 1

Our goal is to solve the extension problem, first let us begin by reviewing our

normal lattice of the group G1,

> NL:=NormalLattice(G1);
> NL;

Normal subgroup lattice
-----------------------

[8] Order 1152 Length 1 Maximal Subgroups: 6 7
---
[7] Order 576 Length 1 Maximal Subgroups: 4 5
[6] Order 384 Length 1 Maximal Subgroups: 5
---
[5] Order 192 Length 1 Maximal Subgroups: 3
[4] Order 192 Length 1 Maximal Subgroups: 3
---
[3] Order 64 Length 1 Maximal Subgroups: 2
---
[2] Order 4 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:.

With the help of MAGMA ,the following code will produce the largest abelian group,

> for i in [1..#NL] do if IsAbelian(NL[i]) then i; end if;
> end for;
1
2

this will tell us that the largest abelian subgroup from the normal lattice of group G1

is NL[2] which is of order 4. However, we are left to wonder what NL[2] is made up of,

we know, thanks to our normal lattice, that it is of order 4 which leaves us to discover

if this is Cyclic 4 or 22.

>X:=[2,2];
>IsIsomorphic(NL[2],AbelianGroup(GrpPerm,X));
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true Mapping from: GrpPerm: $, Degree 64, Order 2ˆ2 to
GrpPerm: $, Degree 4,
Order 2ˆ2

We see that NL[2] is 22. From here we will find the quotient group, meaning we will

factor G1 by NL[2] resulting in the quotient group, which we will name q.

> q,ff:=quo<G1|NL[2]>;
> q;
Permutation group q acting on a set of cardinality 16
Order = 288 = 2ˆ5 * 3ˆ2

(2, 3)(4, 5)(7, 8)(9, 10)(12, 14)(13, 15)
(2, 4, 7)(6, 10, 14)(9, 11, 15)(12, 13, 16)
(2, 4, 7)(3, 5, 8)(6, 11, 16)(9, 13, 14)(10, 15, 12)
(1, 2)(3, 6)(4, 7)(5, 9)(8, 12)(10, 14)(11, 15)(13, 16)

> CompositionFactors(q);
G
| Cyclic(2)

*
| Cyclic(3)

*
| Cyclic(3)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)

*
| Cyclic(2)
1

> nlq:=NormalLattice(q);
> nlq;

Normal subgroup lattice
-----------------------

[7] Order 288 Length 1 Maximal Subgroups: 5 6
---
[6] Order 144 Length 1 Maximal Subgroups: 3 4
[5] Order 96 Length 1 Maximal Subgroups: 4
---
[4] Order 48 Length 1 Maximal Subgroups: 2
[3] Order 48 Length 1 Maximal Subgroups: 2
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---
[2] Order 16 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:.

The quotient subgroup is order 288, and if we refer back to the normal lattice of G1,

we notice that there isn’t a subgroup of order 288, thus the relation between NL[2] and

q will be that of either semi-direct product or mixed extension, because there isn’t a

direct product relationship between them. Now we must find a form to relate q to NL[2]

to create an isomorphic representation of G1, and for this we will use Transversals.

Transversals are needed to relate elements of q that is not a subgroup of NL[2],

to elements in G1, providinng some type of a connector between the two subgroups

within G1.

> T:=Transversal(G1,NL[2]);

Now we need to see which of these transversals relates to q; we need to be careful here,

somtimes MAGMA stores the transversals in a different order each time one runs the

code,

> ff(T[2]) eq q.1;
true
> ff(T[3]) eq q.2;
true
> ff(T[4]) eq q.3;
true
ff(T[5]) eq q.4;.

Now we know which four transversals relate to q, and we also know that only four

elements are neccesary to generate q (refer back to when we printed the subgroup q

with the MAGMA command q;). Continue by labeling the generators of q. Where T [2]

is q.1 and will be labeled L, and similar operation T [3] , T [4] and T [5] will be labeled

M,N , and O respectively .

The generatos of NL[2] are,

> NL[2];
Permutation group acting on a set of cardinality 64
Order = 4 = 2ˆ2
(1, 63)(2, 56)(3, 32)(4, 48)(5, 50)(6, 31)(7, 40)(8, 37)

(9, 55)(10, 54)(11, 34)(12, 19)(13, 21)(14, 60)
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(15, 24)(16, 42)(17, 43)(18, 28)(20, 30)(22, 44)
(23, 41)(25, 59)(26, 58)(27, 35)(29, 52)(33, 57)
(36, 53)(38, 46)(39, 45)(47, 64)(49, 62)(51, 61)

(1, 49)(2, 29)(3, 20)(4, 64)(5, 61)(6, 53)(7, 10)(8, 57)
(9, 41)(11, 42)(12, 38)(13, 58)(14, 44)(15, 39)
(16, 34)(17, 27)(18, 25)(19, 46)(21, 26)(22, 60)
(23, 55)(24, 45)(28, 59)(30, 32)(31,

we will label each J and K respectively. To write a representation of the semi-direct

product form we must write each element of NL[2] and raise it to the power of each

element in q, such as,

jˆl= j
jˆm= k
jˆn= j*k
jˆo= j
kˆl= k
kˆm= j*k
kˆn= j
kˆo= k

To finish we need presentation of q

> FPGroup(q);
Finitely presented group on 4 generators
Relations

$.1ˆ2 = Id($)
$.2ˆ3 = Id($)
$.3ˆ3 = Id($)
$.4ˆ2 = Id($)
($.2, $.3) = Id($)
$.1 * $.3ˆ-1 * $.1 * $.3 = Id($)
$.2ˆ-1 * $.1 * $.2ˆ-1 * $.1 * $.3 = Id($)
$.2ˆ-1 * $.4 * $.3ˆ-1 * $.2 * $.4 * $.3 = Id($)
($.4 * $.2ˆ-1)ˆ3 = Id($)
($.1 * $.4)ˆ4 = Id($)

which in words is, H < j, k, l,m, n, o >:= Group < j, k, l,m, n, o|j2, k2, (j, k), l2,

m3, n3, o2, (m,n), l∗n−1∗l∗n,m−1∗l∗m−1∗l∗n,m−1∗o∗n−1∗m∗o∗n, (o∗m−1)3, (l∗o)4 >;

to make this presentation semi-direct we will add in the equalites between q and NL[2]

that we have listed above, resulting in H:
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H < j, k, l,m, n, o >:= Group < j, k, l,m, n, o|j2, k2, (j, k), l2,m3,

n3, o2, (m,n), l∗n−1 ∗ l∗n,m−1 ∗ l∗m−1 ∗ l∗n,m−1 ∗o∗n−1 ∗m∗o∗n, (o∗m−1)3, (l∗o)4,
jl = j, jm = k, jn = j ∗ k, jo = j, kl = k, km = j ∗ k, kn = j, ko = k >;

We have finaly constructed a semi-direct presentation of G1. To ensure that

our work is correct we will refer to MAGMA,

> H<j,k,l,m,n,o>:=Group<j,k,l,m,n,o|jˆ2,kˆ2,(j,k),
> lˆ2,mˆ3,nˆ3,oˆ2,(m,n),l *nˆ-1 * l *n,mˆ-1 * l *mˆ-1 * l *n ,
> mˆ-1 *o *nˆ-1 *m *o *n,(o *mˆ-1)ˆ3 ,(l *o)ˆ4 ,jˆl=j ,jˆm= k,
> jˆn=j*k , jˆo=j ,kˆl=k ,kˆm=j*k ,kˆn= j,kˆo=k>;
> f,G1,k1:=CosetAction(G,sub<G|x,y,z>);
> #G1;
1152
> f1,H1,k2:=CosetAction(H,sub<H|Id(H)>);
> #H1;
1152
> IsIsomorphic(G1,H1);
false.

We were on the right track, we see that both the order of G1 and of our presentation

labeled H are of order 1152, however H is not a proper isomomorphic image of G1. This

means that it is not a semi-direct isomorphism type, it is actually a mixted extension.

To create a isomphic image that is a mixed extension, we have to check what MAGMA

said the FPGroup(q) is and make sure that each truly is equivalent to identity,

> (T[3],T[4]);
Id($)
>
> T[2] *T[4]ˆ-1 * T[2] *T[4];
Id($)
>
> T[3]ˆ-1*T[2]*T[3]ˆ-1*T[2]*T[4];
Id($)
>
> T[3]ˆ-1*T[5]*T[4]ˆ-1*T[3]*T[5]*T[4];
Id($)
>
> (T[5]*T[3]ˆ-1)ˆ3;
Id($)
>
> (T[2]*T[5])ˆ4;
(1, 49)(2, 29)(3, 20)(4, 64)(5, 61)(6, 53)(7, 10)(8, 57)
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(9, 41)(11, 42)(12, 38)(13, 58)(14, 44)(15, 39)
(16, 34)(17, 27)(18, 25)(19, 46)(21, 26)(22, 60)
(23, 55)(24, 45)(28, 59)(30, 32)(31, 36)(33, 37)
(35, 43)(40, 54)(47, 48)(50, 51)(52, 56)(62, 63).

We see that there is a problem when (l ∗ o)4 6= Id, but actually (l ∗ o)4 = k; so all that

is left to do is make that small adjustment.

> H<j,k,l,m,n,o>:=Group<j,k,l,m,n,o|jˆ2,kˆ2,(j,k),
> lˆ2,mˆ3,nˆ3,oˆ2,(m,n),l *nˆ-1 * l *n,mˆ-1 * l *mˆ-1 * l *n ,
> mˆ-1 *o *nˆ-1 *m *o *n,(o *mˆ-1)ˆ3 ,(l *o)ˆ4=k ,jˆl=j ,
> jˆm= k, jˆn=j*k , jˆo=j ,kˆl=k ,kˆm=j*k ,kˆn= j,kˆo=k>;
> #G;
1152
> f1,G1,k2:=CosetAction(G,sub<G|Id(G)>);
> #G1;
1152
> f1,H1,k2:=CosetAction(H,sub<H|Id(H)>);
> #H1;
1152
> IsIsomorphic(G1,H1);
true Mapping from: GrpPerm: G1 to GrpPerm: H1
Composition of Mapping from: GrpPerm: G1 to GrpPC and
Mapping from: GrpPC to GrpPC and
Mapping from: GrpPC to GrpPerm: H1

Thus, our G1 is made up of 2 :• q, but now we are left with the question of what can q

be expressed by?

Within our quotient group q, we will factor q by its largest abelian subgroup

nlq[2]; this new quotient group will be labeled q1;

> q,ff:=quo<G1|NL[2]>;
> q;
Permutation group q acting on a set of cardinality 16
Order = 288 = 2ˆ5 * 3ˆ2

(2, 3)(4, 5)(7, 8)(9, 10)(12, 14)(13, 15)
(2, 4, 7)(6, 10, 14)(9, 11, 15)(12, 13, 16)
(2, 4, 7)(3, 5, 8)(6, 11, 16)(9, 13, 14)(10, 15, 12)
(1, 2)(3, 6)(4, 7)(5, 9)(8, 12)(10, 14)(11, 15)(13, 16)

> for i in [1..#nlq] do if IsAbelian(nlq[i]) then i; end if;
end for;

1
2
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> q1,ff1:=quo<q|nlq[2]>;
> nlq1:=NormalLattice(q1);
> nlq1;

Normal subgroup lattice
-----------------------

[6] Order 18 Length 1 Maximal Subgroups: 4 5
---
[5] Order 9 Length 1 Maximal Subgroups: 2 3
[4] Order 6 Length 1 Maximal Subgroups: 3
---
[3] Order 3 Length 1 Maximal Subgroups: 1
[2] Order 3 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:

> q1;
Permutation group q1 acting on a set of cardinality 6
Order = 18 = 2 * 3ˆ2

(1, 2)(3, 4)(5, 6)
(2, 4, 6)
(1, 3, 5)(2, 4, 6)
Id(q1).

We repeated the process of factoring by the largest abelian subgroup, here we

are able to see that q1 is made up 33 and 2; and their relationship between these two

subgroups is that of a semi-direct product. We now know that q1 is made up of 32 : 2,

and we will use MAGMA to help us prove this;

> nlq1[5];
Permutation group acting on a set of cardinality 6
Order = 9 = 3ˆ2

(2, 6, 4)
(1, 5, 3)(2, 4, 6)

> A:=q1! (2, 6, 4);
> B:=q1!(1, 5, 3)(2, 4, 6);
> nlq1[5] eq sub<q1|A,B>;
true
> for C in q1 do if Order(C) eq 2 and sub<q1|A,B,C> eq q1 then C;
break; end if;
for|if> f; end for;
(1, 2)(3, 4)(5, 6)
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> C:=q1!(1, 2)(3, 4)(5, 6);.

Again, to write the semi-direct product we have to raise each A and B to the power of

C. As we will see in the code below, it might take some trial and error,

> AˆC;
(1, 5, 3)
> AˆC;
(1, 5, 3)
> AˆC eq A*B;
true
> BˆC;
(1, 3, 5)(2, 6, 4)
> BˆC eq A*Bˆ2;
false
> BˆC eq Aˆ2*B;
false
> BˆC eq Bˆ2;
true

and now all that will be left to do is to write a presentation for q1

> H<a,b,c>:=Group<a,b,c|aˆ3,bˆ3,(a,b),cˆ2,aˆc=a*b,bˆc=bˆ2>;
> #H;
18
> f,h1,k2:=CosetAction(H,sub<H|Id(H)>);
> s:=IsIsomorphic(q1,h1);
> s;
true
> H<a,b,c>:=Group<a,b,c|aˆ3,bˆ3,(a,b),cˆ2,aˆc=a*b,bˆc=bˆ2>;
> #H;
18
> f,h1,k2:=CosetAction(H,sub<H|Id(H)>);
> s:=IsIsomorphic(q1,h1);
> s;
true.

We have successfully written a semi-direct presentation for q1, and have proved that

q1 is 32 : 2 now we will incorporate the remainder of the subgroup q. What is left

to explore is the remainder of q, consisting of nlq[2] which is 24 and will also be a

semi-direct product,

>nlq[2];
Permutation group acting on a set of cardinality 16
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Order = 16 = 2ˆ4
(1, 15)(2, 11)(3, 16)(4, 9)(5, 7)(6, 13)(8, 14)(10, 12)
(1, 4)(2, 7)(3, 10)(5, 11)(6, 14)(8, 13)(9, 15)(12, 16)
(1, 6)(2, 3)(4, 14)(5, 12)(7, 10)(8, 9)(11, 16)(13, 15)
(1, 7)(2, 4)(3, 14)(5, 15)(6, 10)(8, 16)(9, 11)(12, 13)

D:=q!(1, 15)(2, 11)(3, 16)(4, 9)(5, 7)(6, 13)(8, 14)(10, 12);
E:=q!(1, 4)(2, 7)(3, 10)(5, 11)(6, 14)(8, 13)(9, 15)(12, 16);
F:=q! (1, 6)(2, 3)(4, 14)(5, 12)(7, 10)(8, 9)(11, 16)(13, 15);
I:=q! (1, 7)(2, 4)(3, 14)(5, 15)(6, 10)(8, 16)(9, 11)(12, 13);

>K:=sub<q|D,E,F,I>;
>T:=Transversal(q,K);
>nlq[2] eq K;
true

>for i in [1..#T] do if ff1(T[i]) eq A then i; end if; end for;
2
>for i in [1..#T] do if ff1(T[i]) eq B then i; end if; end for;
3
>for i in [1..#T] do if ff1(T[i]) eq C then i; end if; end for;
4
>T[2];
>T2:=q!(2, 3)(4, 5)(7, 8)(9, 10)(12, 14)(13, 15);

>T[3];
>T3:=q!(2, 4, 7)(6, 10, 14)(9, 11, 15)(12, 13, 16);

>T[4];
>T4:=q!(2, 4, 7)(3, 5, 8)(6, 11, 16)(9, 13, 14)(10, 15, 12);

>ff1(T2) eq A;
true
>ff1(T3) eq B;
true
>ff1(T4) eq C;
true.

The Transversals allow us to write A,B, and C and allow us to commute with D,E, F

and I, the following loop will help us with this

>for i,j,k in [1..2] do if DˆT2 eq Dˆi*Eˆj*Fˆk then i,j,k;
> end if; end for;
1 2 1
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/*D*Eˆ2*F
DˆA=D*Eˆ2*F */

>for i,j,k in [1..2] do if EˆT2 eq Dˆi*Iˆj*Fˆk then i,j,k;
>end if; end for;
1 1 2
/(D*I*Fˆ2
EˆA=D*I*Fˆ2 */

>for i,j,k in [1..2] do if FˆT2 eq Dˆi*Eˆj*Fˆk then i,j,k;
>end if; end for;
2 2 1
/*Dˆ2*Eˆ2*F
FˆA=Dˆ2*Eˆ2*F */

>for i,j,k in [1..2] do if IˆT2 eq Dˆi*Eˆj*Fˆk then i,j,k;
>end if; end for;
1 1 1
/*D*E*F
IˆA=D*E*F */

>for i,j,k in [1..2] do if DˆT3 eq Dˆi*Eˆj*Fˆk then i,j,k;
>end if; end for;
1 1 2
/*D*E*Fˆ2
DˆB=D*E*Fˆ2 */

>for i,j,k in [1..2] do if EˆT3 eq Dˆi*Eˆj*Iˆk then i,j,k;
> end if; end for;
2 2 1
/*Dˆ2*Eˆ2*I
EˆB=Dˆ2*Eˆ2*I */

>for i,j,k in [1..2] do if FˆT3 eq Iˆi*Eˆj*Fˆk then i,j,k;
>end if; end for;
1 2 1
/*I*Eˆ2*F
FˆB=I*Eˆ2*F */

>for i,j,k in [1..2] do if IˆT3 eq Iˆi*Eˆj*Fˆk then i,j,k;
>end if; end for;
1 1 2
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/*I*E*Fˆ2
IˆB=I*E*Fˆ2 */

>for i,j,k in [1..2] do if DˆT4 eq Dˆi*Fˆj*Iˆk then i,j,k;
> end if; end for;
1 1 1
/*D*F*I
DˆC=D*F*I */

>for i,j,k in [1..2] do if EˆT4 eq Dˆi*Fˆj*Iˆk then i,j,k;
>end if; end for;
2 2 1
/*Dˆ2*Fˆ2*I
EˆC=Dˆ2*Fˆ2*I */

>for i,j,k,l in [1..2] do if FˆT4 eq Dˆi*Eˆj*Fˆk*Iˆl then i,j,k,l;
>end if; end for;
1 1 2 1
/*D*E*Fˆ2*I
FˆC=D*E*Fˆ2*I */

>for i,j,k,l in [1..2] do if IˆT4 eq Dˆi*Eˆj*Fˆk*Iˆl then i,j,k,l;
> end if; end for;
2 1 2 1
/*Dˆ2*E*Fˆ2*I
IˆC=Dˆ2*E*Fˆ2*I */.

Now we can write a presentation of q,

>H<a,b,c,d,e,f,i>:=Group<a,b,c,d,e,f,i| aˆ2, bˆ3, cˆ3, (b, c),
>a*cˆ-1*a*c, bˆ-1*a*bˆ-1*a*c, dˆa=d*eˆ2*f, eˆa=d*i*fˆ2,
>fˆa=dˆ2*eˆ2*f, iˆa=d*e*f, dˆb=d*e*fˆ2,
>eˆb=dˆ2*eˆ2*i, fˆb=i*eˆ2*f, iˆb=i*e*fˆ2, dˆc=d*f*i,
>eˆc=dˆ2*fˆ2*i, fˆc=d*e*fˆ2*i, fˆc=d*e*fˆ2*i,
>iˆc=dˆ2*e*fˆ2*i>;

> #H;
288
> Order(q) eq #H;
true
> f1,h1,k3:=CosetAction(H,sub<H|Id(H)>);
> s:=IsIsomorphic(q,h1);
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> s;
true
> IsIsomorphic(q,h1);
true Mapping from: GrpPerm: q to GrpPerm: h1
Composition of Mapping from: GrpPerm: q to GrpPC and
Mapping from: GrpPC to GrpPC and

Therefore, we have proven G ∼= 22 :• (24 : (32 : 2)).
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Chapter 6

Tables of Homomorphic Images

6.1 Homomorphic Image of 2∗15 : 3•(5 : 2)

N =< x, y, z >∼= 2∗15 : 3•(5 : 2)

where x ∼ (1, 2, 7, 12, 6, 5, 9, 15, 13, 10, 3, 8, 14, 11, 4),

y ∼ (1, 3, 5)(2, 8, 9)(4, 10, 6)(7, 14, 15)(11, 13, 12)

z ∼ (2, 6)(4, 8)(7, 13)(9, 10)(11, 15)(12, 14)

and the prgenitor is.

N < x, y, z, t >:= Group < x, y, z, t|y3, z2, (x, y),

y−1 ∗ z ∗ y ∗ z, z ∗ y−1 ∗ x−1 ∗ z ∗ x−1, x5 ∗ y, t2, (t, x ∗ z ∗ y−1) >

also, we stabilize t ∼ t15.
The relations are:

(z*t)ˆr1,
(y*t)ˆr2,
(x*yˆ-1*t)ˆr3,
(x*z*t)ˆr4,
(x*t)ˆr5,
(xˆ2*t)ˆr6
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Table 6.1: Some Finite Images of Progenitor 2∗15 : 3•(5 : 2)

#G r1 r2 r3 r4 r5 r6 Isomorphism Type

1440 0 0 0 0 0 3 23 :• (A5 × 3)

720 0 0 0 0 5 4 PGL2(9)

120 0 0 0 0 10 3 A5 × 2

201600 0 0 0 3 4 4 5 : (A8
•2)

240 0 0 2 0 0 4 22 : (3 : 2)

600 0 0 2 5 10 10 Alt5
960 0 0 4 2 8 4 24 : (5 : 2)

14515200 0 0 4 3 6 4

360 0 0 9 6 3 0 A5 × 2

5160960 0 4 3 0 0 7

60 0 10 6 2 4 10 C2

660 5 2 5 0 0 0 L2(11)

6.2 Homomorphic Image of 2∗15 : D15

N =< x, y, z >∼= 2∗15 : D15

where x ∼ (1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11),

y ∼ (2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14)

z ∼ (1, 3, 5)(2, 7, 8)(4, 9, 11)(6, 12, 13)(10, 14, 15)

and the prgenitor is

N < x, y, z, t >:= Group < x, y, z, t|y2, z3, (x−1 ∗ y)2,

(x, z), (y ∗ z−1)2, x−5, t2, (t, y ∗ x ∗ z) >,

also, we stabilize t ∼ t15.
The relations used are:

(x *z*t)ˆr1,
(z * xˆ-1*t)ˆr2,
(z*t)ˆr3,
(xˆ2*t)ˆr4,
(xˆ2 * zˆ-1*t)ˆr5,
(xˆ2 * z*t)ˆr6,
(x*t)ˆr7,
(y*t )ˆr8,
(z*t)ˆr9
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Table 6.2: Some Finite Images of Progenitor 2∗15 : D15

#G r1 r2 r3 r4 r5 r6 r7 r8 r9 Isomorphism Type

360 0 0 0 0 0 0 0 3 2 A5 × 2

14880 0 0 0 0 0 0 0 3 3 L2(31)

120 0 0 0 0 0 0 2 0 5 A5 × 2

504 0 0 0 0 0 0 2 7 9 L2(8)

20520 0 0 0 0 0 0 2 9 10 L2(19)× (3 : 2)

21600 0 0 0 0 0 0 2 10 8 PGL2(9) : 6

40320 0 0 0 0 0 0 3 6 4 S8
720 0 0 0 0 0 0 4 6 2 S5 × 2

1440 0 0 0 0 0 0 4 8 2 PGL2(9)× 2

29160 0 0 0 0 0 3 5 6 0 35 : (A5 × 2)

24360 0 0 0 0 0 4 0 7 2 PGL2(29)

4320 0 0 0 0 0 10 2 8 0 PGL2(9) : (3 : 2)

12180 0 0 0 0 3 0 7 5 7 L2(29)

7920 0 0 0 0 4 4 0 6 2 PGL2(11)× 2

979200 0 0 0 0 4 4 6 4 0 2•(A5 : PGL2(16))

29760 0 0 0 0 10 3 0 0 4 2•L2(31)

704880 0 0 0 3 0 4 0 0 0 3•L2(89)

6.3 Some Finite Images of Progenitor 2∗5 : A5

N =< x, y >∼= 2∗5 : A5

where x ∼ (1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8),

y ∼ (1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13),

and the prgenitor is

N < x, y, t >:= Group < x, y, t|x5, y3, (x ∗ y ∗ x)2, t2, (t, x2 ∗ y), (t, x ∗ y−1 ∗
x−1 ∗ y ∗ x) >,

also, we stabilize t ∼ t1.
The relations use are:

((y*x)ˆ2*t)ˆr1,
(y*xˆ-2*t)ˆr2,
(x*y*xˆ-1*t)ˆr3,
(y*x*yˆ-1*xˆ-1*y*t)ˆr4.
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Table 6.3: Some Finite Images of Progenitor 2∗5 : A5

#G r1 r2 r3 r4 Isomorphism Type

75000 10 10 6 10 54 : (A•52)

1920 10 10 6 4 25 :• A5

9720 10 10 6 6 34 : (A5 :• 2)

30720 10 10 6 8 28 : (A5 × 2)

960 10 5 6 4 24 : S5
175560 7 0 0 0 J1

117600 8 8 0 0 PGL2(249)

720 6 6 8 6 S6

6.4 Some Finite Images of Progenitor 2∗6 : 32 : (22•2)

N =< x, y >∼= 32 : (22
•
2)

where x ∼ (1, 2, 4)(5, 6),

y ∼ (1, 3)(2, 5)(4, 6),

and the prgenitor is

< x, y, t >:= Group < x, y, t|x6, y2, (x−1 ∗ y)4, (x ∗ y ∗x−1 ∗ y)2, t2, (x3 ∗ y ∗x2 ∗
y, t), (y ∗ x−2 ∗ y, t), (y ∗ x3 ∗ y, t), (x3, t) >,

also, we stabilize t ∼ t1.
The relations use are:

(y*t)ˆr1,
(y*x*t)ˆr2,
(x*y*x*t)ˆr3,
((y*x)ˆ2*t)ˆr4,
(xˆ2*y*xˆ-2*y*t)ˆr5.
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Table 6.4: Some Finite Images of Progenitor 2∗6 : 32 : (22
•
2)

#G r1 r2 r3 r4 r5 Isomorphism Type

288 0 0 4 0 0 4 :• 2

432 0 0 6 2 0 6•2

80 0 0 10 0 2 2•(5 : 2)

20160 0 0 10 0 3 4 :• S7
144 0 4 6 0 0 C2

5040 0 7 0 0 3 S7
10080 0 7 10 0 0 2•S7
4608 4 0 0 4 0 26 : 32 : (22

•
2)

576 8 0 0 2 6 23 :• 2

5806080 8 0 9 4 6 S(6, 2)•22

903168 6 0 8 0 0 22 : (L2(7)× L2(7)× 22)•2

6.5 Some Finite Images of Progenitor 2∗5 : Alt5

N =< x, y >∼= Alt5

where x ∼ (1, 2, 4, 5, 3),

y ∼ (3, 5, 4),

and the prgenitor is

N < x, y, t >:= Group < x, y, t|x5, y3, (x∗y−1∗x)2, t2, (y, t), ((x−1, y−1), t) >,

also, we stabilize t ∼ t1.
The relations use are:

(xˆy*t)ˆr1,
(x*y*t)ˆr2,
(y*xˆ-1*t)ˆr3,
(x*y*xˆ-1*yˆ-1*x*y*t)ˆr4.
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Table 6.5: Some Finite Images of Progenitor 2∗5 : Alt5

#G r1 r2 r3 r4 Isomorphism Type

120 0 0 0 2 C2

1920 0 0 0 4 25 :• A5

960 0 0 5 4 A5 : 24

720 0 0 6 6 S6
175560 0 0 7 0 J1
117600 0 0 8 8 L2(49)× 2

9720 0 6 0 6 34 : (A5
•2)

75000 6 0 0 10 53 : (A5
•2)

6.6 Some Finite Images of Progenitor 2∗12 : (23•2) : (S2
3)

N =< v,w, x, y, z >∼= (23
•
2) : (S2

3)

where v ∼ (1, 2)(3, 6)

w ∼ (3, 6)(9, 11)(10, 12)

x ∼ (1, 3)(2, 6)(4, 9)(5, 10)(7, 11)(8, 12),

y ∼ (1, 4, 5)(2, 7, 8)(3, 9, 10)(6, 11, 12),

z ∼ (4, 5)(7, 8)(9, 10)(11, 12)

and the prgenitor is

N < v,w, x, y, z, t >:= Group < v,w, x, y, z, t|v2, w2, x2, y3, z2, (v ∗ w)2, (v ∗
x)2, w ∗ y−1 ∗w ∗ y, x ∗ y−1 ∗x ∗ y, (v ∗ z)2, (w ∗ z)2, (x ∗ z)2, (y−1 ∗ z)2, (w ∗x)4, (v ∗ y ∗ v ∗
y−1)2, y−1∗x∗w∗x∗w∗v∗y−1∗v∗y−1∗v, t2, (w, t), (z, t), (v∗w∗x∗w∗x, t), (y∗v∗y−1, t),

also, we stabilize t ∼ t1.
The relations use are:

(x*t)ˆr1,
(y * v * y * v * z*t)ˆr2,
(v * x*t)ˆr3,
(v * w*t)ˆr4,
(v * x * z * y*t)ˆr5,
(x * y*t)ˆr6,
(w * y*t)ˆr7,
(w * x * y*t)ˆr8.
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Table 6.6: Some Finite Images of Progenitor 2∗12 : (23
•
2) : (S3

2)

#G r1 r2 r3 r4 r5 r6 r7 r8 Isomorphism Type

645120 0 0 0 0 6 7 4 7 27 :• S7
1344 0 0 0 0 6 8 3 0 2•PGL2(7)

864 0 0 0 0 6 6 0 9 32 : (6 : 2)

288 0 0 0 0 6 6 2 0 (2× 3) :• 2

16128 0 0 0 0 6 0 3 0 6 : (PGL2(7)

1344 0 0 0 0 6 0 3 8 2•PGL2(7)

103680 0 0 0 0 5 9 4 0 S(4, 3) : 2

1358954496 0 0 0 0 4 9 6 0

169869312 0 0 0 0 4 9 6 9

6.7 Some Finite Images of Progenitor 2∗12 : 24 : 3

N =< v,w, x, y, z >∼= 24 : 3

where v ∼ (1, 3)(4, 5)(6, 11)(10, 12)

w ∼ (1, 3)(2, 7)(4, 5)(6, 10)(8, 9)(11, 12)

x ∼ (1, 5)(2, 8)(3, 4)(6, 10)(7, 9)(11, 12),

y ∼ (1, 4)(2, 7)(3, 5)(6, 11)(8, 9)(10, 12),

z ∼ (1, 2, 6)(3, 8, 11)(4, 9, 10)(5, 7, 12)

and the prgenitor is

N < v,w, x, y, z, t >:= Group < v,w, x, y, z, t|v2, w2, x2, y2, z3, (v ∗ w)2, (v ∗
x)2, (w ∗ x)2, (v ∗ y)2, (w ∗ y)2, (x ∗ y)2, y ∗ z−1 ∗ x ∗ z, z ∗ x ∗ v ∗ z−1 ∗w, z−1 ∗ x ∗w ∗ v ∗
z ∗ w, v ∗ z ∗ w ∗ v ∗ z−1 ∗ y, t2, (t, w ∗ x), (t, v ∗ y),,

also, we stabilize t ∼ t12.
The relations use are:

(zˆ-1*t)ˆr1,
(z*t)ˆr2,
(v*w*t)ˆr3,
(v*t)ˆr4,
(w*t)ˆr5,
(x*t)ˆr6.



117

Table 6.7: Some Finite Images of Progenitor 2∗12 : 24 : 3

#G r1 r2 r3 r4 r5 r6 Isomorphism Type

96 0 2 0 0 0 0 C2

768 0 3 0 0 0 4 26 : (3•2)

384 0 3 0 0 0 6 23 :• (22 : 3)

192 0 3 0 2 0 2 22 : 3

768 0 3 0 4 0 0 26 :• (22 : 3)

660 0 5 0 2 6 3 L2(11)

675840 0 5 0 3 4 0 210 : L2(11)

3420 0 5 2 5 10 10 L2(19)

435600 0 5 3 6 0 6 L2(11)× L2(11)

52416 0 6 0 3 2 8 22 : L2(13)
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Chapter 7

MAGMA Code: Progenitor

Transitive(15,5),

Companion To Chapter 2

N:=TransitiveGroup(15,5);
N;
S:=Sym(15);
xx:=S!(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8);
yy:=S!(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13);
N:=sub<S|xx,yy>;
#N;
/*60*/

FPGroup(N);
NN<x,y>:=Group<x,y|xˆ5,yˆ3,(x*y*x)ˆ2>;

/*
Normal subgroup lattice
-----------------------

[2] Order 60 Length 1 Maximal Subgroups: 1
---
[1] Order 1 Length 1 Maximal Subgroups:
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> IsIsomorphic(N,Alt(5));
true Homomorphism of GrpPerm: N, Degree 15,
Order 2ˆ2 * 3 * 5 into GrpPerm: $,
Degree 5, Order 2ˆ2 * 3 * 5 induced by

(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)(4, 5, 11, 13, 8)
|--> (1, 4, 5, 3, 2)

(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)(12, 14, 13)
|--> (3, 4, 5)

*/

N1:=Stabilizer(N,1);
N1;
/*Permutation group N1 acting on a set of cardinality 15
Order = 4 = 2ˆ2

(2, 11)(3, 4)(5, 12)(7, 9)(10, 13)(14, 15)
(2, 5)(3, 13)(4, 10)(7, 14)(9, 15)(11, 12)*/

NN<x,y>:=Group<x,y|xˆ5,yˆ3,(x*y*x)ˆ2>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..60]];
for i in [2..60] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxˆ-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yyˆ-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;

for i in [1..60] do if ArrayP[i] eq
N!(2, 11)(3, 4)
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(5, 12)(7, 9)(10, 13)(14, 15) then
print Sch[i]; end if; end for;
for i in [1..60] do if ArrayP[i] eq
N!(2, 5)(3, 13)(4, 10)
(7, 14)(9, 15)(11, 12)then print
Sch[i]; end if; end for;
/*
xˆ2 * y
x * yˆ-1 * xˆ-1 * y * x

*/

NN<x,y,t>:=Group<x,y,t|xˆ5, yˆ3, (x*y*x)ˆ2, tˆ2,
(t,xˆ2*y), (t,x*yˆ-1*xˆ-1*y*x)>;

C:=Classes(N);
Classes(N);
#C;

for i in [2..5] do
i,Orbits(Centralizer(N,C[i][3]));
end for;

for j in [2..5] do
C[j][3];
for i in [1..60] do
if ArrayP[i] eq C[j][3]
then Sch[i]; end if;
end for;
end for;

/*here we are just calculating the conjugations
for all of the first order relations*/

/*
[2](1, 7)(3, 8)(5, 14)(6, 11)
(10, 12)(13, 15)
(x*y*x*t)ˆr
(x*y*x*tˆ(yˆx*y)ˆr
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(x*y*x*tˆ(y))ˆr
(x*y*x*tˆ(x))ˆr
(x*y*x*tˆ(xˆ3))ˆr
(x*y*x*tˆ((yyˆxx)ˆ2)ˆr

[3](1, 4, 10)(2, 5, 8)(3, 7, 11)
(6, 9, 15)(12, 14, 13)
(y*t)ˆr
(y*tˆ(yˆx*y))ˆr
(y*tˆ(xˆ3))ˆr
(y*tˆ((yˆx)ˆ2))ˆr
(y*tˆ(x*y)ˆ3)ˆr

[4](1, 9, 10, 3, 14)(2, 15, 7, 12, 6)
(4, 5, 11, 13, 8)
(x*t)ˆr
(x*tˆ(yˆx*y))ˆr
(x*tˆy)ˆr

[5](1, 10, 14, 9, 3)(2, 7, 6, 15, 12)
(4, 11, 8, 5, 13)
(xˆ2*t)ˆr
(xˆ2*tˆ(yˆx*y))ˆr
(xˆ2*tˆy)ˆr

*/

xx:=S!(1, 9, 10, 3, 14)
(2, 15, 7, 12, 6)
(4, 5, 11, 13, 8);
yy:=S!(1, 4, 10)(2, 5, 8)
(3, 7, 11)(6, 9, 15)
(12, 14, 13);

Orbits(Stabiliser(Centraliser(N,yy),1));

(y*t*tˆ(y))ˆr
(y*t*tˆ(x))ˆr
(y*t*tˆ(xˆ2))ˆr
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(y*t*tˆ(xˆ3))ˆr

/*FAMOUS LEMMA*/
N12:=Stabiliser(N,[1,2]);
C12:=Centraliser(N,N12);
C12;
for i in [1..60] do if ArrayP[i] eq N!
(1, 9, 10, 3, 14)(2, 15, 7, 12, 6)
(4, 5, 11, 13, 8)
then print Sch[i]; end if; end for;

for i in [1..60] do if ArrayP[i] eq N!
(1, 4, 10)(2, 5, 8)(3, 7, 11)(6, 9, 15)
(12, 14, 13)
then print Sch[i]; end if; end for;

/* x, y are already relations*/

/*tran15,5 rr */

for r1, r2, r3, r4,r5, r6, r7, r8, r9, r10,
r11, r12 in [0..10] do
G<x,y,t>:=Group<x,y,t|xˆ5, yˆ3,
(x*y*x)ˆ2, tˆ2, (t,xˆ2*y),
(t,x*yˆ-1*xˆ-1*y*x),
(x*y*x*t)ˆr1,
(y*t*tˆ(x))ˆr2,
(y*t*tˆ(xˆ2))ˆr3,
(x*y*x*tˆ(y))ˆr4,
(x*y*x*tˆ(x))ˆr5,
(y*t*tˆ(y))ˆr6,
(y*t*tˆ(xˆ3))ˆr7,
(x*y*x*tˆ(xˆ3))ˆr8,
(xˆ2*t)ˆr9,
(y*tˆ(xˆ3))ˆr10,
(x*t)ˆr11,
(y*t)ˆr12>;
if #G gt 60 then r1, r2, r3, r4, r5, r
6, r7, r8, r9, r10, r11, r12,
#G;
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end if;
end for;
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Chapter 8

MAGMA Code: Isomorphism

Type of L2(31)
•2

G<x,y,z,t>:=Group<x,y,z,t|yˆ2,zˆ3,(xˆ-1 * y)ˆ2,
(x, z),
(y * zˆ-1)ˆ2, xˆ-5,tˆ2, (t,y * x * z),(z*t)ˆ4,
(xˆ2 * zˆ-1*t)ˆ10,(xˆ2 * z*t)ˆ3>;
Index(G,sub<G|x,y,z>);

f,G1,k:=CosetAction(G,sub<G|x,y,z>);

CompositionFactors(G1);

Center(G1);

NL:=NormalLattice(G1);
NL;

q,ff:=quo<G1|NL[2]>;
q;

a:=q!(2, 3, 6, 14, 11)(4, 10, 19, 15, 7)
(5, 8, 16, 18, 13)(9, 21, 37, 73, 85)(12,
25, 49, 98, 72)(17, 30, 59, 112, 65)(20
, 34, 69, 26, 50)(22, 41, 84, 74,
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38)(23, 39, 75, 133, 97)(24, 46, 92, 77
, 42)(27, 54, 105, 190, 125)(28,
57, 58, 60, 62)(29, 31, 32, 64, 114)(33,
66, 121, 193, 109)(35, 53, 52,

36, 70)(40, 81, 145, 256, 268)(43, 87,
159, 283, 253)(44, 48, 94, 136,

78)(45, 79, 137, 93, 47)(51, 100, 180,
314, 312)(55, 104, 189, 191,
106)(56, 107, 113, 200, 127)(61, 88, 162
, 289, 284)(63, 117, 208, 222,
212)(67, 91, 169, 134, 122)(68, 123, 201,
170, 111)(71, 129, 226, 241,

139)(76, 138, 240, 227, 130)(80, 142, 249,
115, 163)(82, 149, 267, 257,

146)(83, 147, 258, 381, 282)(86, 156, 252, 260
, 150)(89, 160, 116, 205,
255)(90, 167, 294, 352, 221)(95, 172, 299, 430,
407)(96, 101, 183, 320,
315)(99, 177, 309, 174, 184)(102, 181, 171, 296,
313)(103, 140, 245,
374, 225)(108, 195, 329, 446, 448)(110, 119, 209,
217, 342)(118, 211,
194, 328, 126)(120, 213, 347, 135, 238)(124, 218,
350, 168, 141)(128,
224, 308, 375, 246)(131, 228, 356, 370, 243)(132
, 234, 338, 358,
230)(143, 166, 203, 207, 250)(144, 251, 206, 204
, 165)(148, 264, 185,
322, 316)(151, 269, 393, 229, 362)(152, 158, 280
, 379, 261)(153, 262,
378, 279, 157)(154, 274, 400, 404, 305)(155, 277
, 405, 278, 302)(161,
286, 412, 290, 419)(164, 291, 422, 399, 463)(173
, 301, 377, 431,
300)(175, 304, 433, 464, 403)(176, 306, 307, 325
, 188)(178, 187, 244,
298, 310)(179, 311, 297, 303, 186)(182, 317, 332,
372, 321)(192, 239,
215, 254, 214)(196, 330, 447, 395, 197)(198, 334
, 335, 333, 331)(199,
336, 450, 492, 457)(202, 339, 237, 367, 349)(210
, 343, 361, 469,
486)(216, 235, 233, 360, 451)(219, 247, 273, 248
, 220)(223, 354, 465,
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495, 491)(231, 337, 346, 456, 493)(232, 236, 365
, 327, 359)(242, 371,
281, 318, 437)(259, 383, 475, 479, 408)(263, 388
, 363, 416, 397)(265,
391, 366, 323, 389)(266, 390, 324, 441, 435)(270
, 396, 271, 394,
369)(272, 398, 424, 476, 410)(275, 402, 276, 401
, 353)(285, 351, 461,
455, 384)(287, 415, 420, 417, 413)(288, 414, 368
, 421, 484)(292, 385,
432, 392, 480)(293, 348, 458, 442, 355)(295, 386
, 477, 364, 406)(319,
436, 409, 439, 373)(326, 443, 483, 382, 453)(340,
452, 490, 494,

460)(341, 423, 411, 462, 387)(344, 428, 440, 470,
449)(345, 454, 471,
478, 427)(357, 438, 488, 489, 468)(376, 473, 481,
434, 474)(380, 466,

445, 485, 459)(418, 482, 444, 426, 425)(429, 487,
496, 472, 467);

b:=q!(2, 4)(3, 7)(5, 13)(6, 15)(8, 18)(9, 22)(10, 11)(12,
25)(14, 19)(17, 31)(20,

35)(21, 38)(23, 44)(24, 47)(26, 52)(27, 55)(28, 58)(29,
30)(32, 65)(33,

67)(34, 70)(36, 69)(37, 74)(39, 78)(40, 82)(41, 85)(42,
45)(43, 88)(46,
93)(48, 97)(49, 72)(50, 53)(51, 101)(54, 106)(56, 111)(59,
114)(60,
62)(61, 87)(63, 118)(64, 112)(66, 122)(68, 127)(71, 130)
(73, 84)(75,
136)(76, 139)(77, 79)(80, 143)(81, 146)(83, 152)(86,
157)(89, 165)(91,
109)(92, 137)(94, 133)(95, 173)(96, 100)(99, 178)(102,
186)(103,

128)(104, 125)(105, 191)(107, 170)(108, 196)(110, 119)
(113, 201)(115,
203)(116, 206)(117, 126)(120, 214)(121, 134)(123, 200)
(124, 219)(129,
227)(131, 232)(132, 235)(135, 239)(138, 241)(140, 246)
(141, 247)(142,
250)(144, 255)(145, 257)(147, 261)(148, 265)(149, 268)
(150, 153)(151,
270)(154, 275)(155, 278)(156, 279)(158, 282)(159, 284)
(160, 204)(161,
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287)(162, 253)(163, 166)(164, 259)(167, 221)(168, 273)
(169, 193)(171,
297)(172, 300)(174, 244)(176, 307)(177, 310)(179, 313)(
180, 315)(181,
303)(182, 318)(183, 312)(184, 187)(185, 323)(188, 325)(
189, 190)(192,
238)(194, 222)(195, 197)(198, 335)(199, 337)(202, 339)(
205, 251)(207,
249)(208, 328)(209, 342)(210, 344)(211, 212)(213, 254)(
215, 347)(216,
234)(218, 220)(223, 340)(224, 225)(226, 240)(228, 359)
(229, 271)(230,
233)(231, 336)(236, 243)(237, 349)(242, 372)(245, 375)
(248, 350)(252,
378)(256, 267)(258, 379)(260, 262)(264, 389)(269, 369)
(272, 351)(274,
353)(276, 404)(277, 405)(280, 381)(281, 317)(283, 289)
(285, 398)(286,
413)(288, 368)(290, 420)(291, 408)(292, 423)(293, 380)
(294, 352)(295,
427)(296, 311)(298, 309)(299, 431)(301, 407)(304, 403)
(305, 402)(308,
374)(314, 320)(316, 391)(319, 439)(321, 437)(322, 366)
(324, 441)(326,
444)(327, 356)(329, 395)(330, 448)(331, 333)(332, 371)
(338, 451)(341,
385)(343, 449)(345, 406)(346, 457)(348, 459)(354, 460)
(355, 466)(357,
467)(358, 360)(361, 470)(362, 396)(363, 416)(364, 454)
(365, 370)(376,
474)(377, 430)(382, 425)(383, 463)(384, 424)(386, 478)
(387, 432)(388,
397)(390, 435)(392, 462)(393, 394)(399, 475)(400, 401)
(409, 436)(410,
461)(411, 480)(412, 417)(415, 419)(418, 483)(421, 484)
(422, 479)(426,
453)(428, 486)(429, 468)(433, 464)(434, 473)(438, 472)
(440, 469)(442,
445)(443, 482)(446, 447)(450, 493)(452, 491)(455, 476)
(456, 492)(458,
485)(465, 494)(471, 477)(487, 489)(488, 496)(490, 495);
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c:=q!(1, 2)(3, 9)(4, 12)(6, 17)(7, 16)(8, 20)(11, 24)(13, 27)
(14, 28)(15, 29)(18,
32)(19, 33)(21, 40)(22, 43)(23, 26)(25, 51)(30, 61)
(31, 63)(34, 71)(35,
38)(36, 56)(37, 76)(39, 80)(41, 49)(42, 86)(44, 90)
(45, 91)(46, 95)(47,
96)(48, 68)(50, 99)(52, 103)(53, 104)(54, 108)(55, 110)
(57, 113)(58,
93)(59, 60)(62, 116)(64, 120)(65, 106)(66, 124)(67, 126)
(69, 128)(70,
75)(72, 132)(73, 134)(74, 135)(77, 131)(78, 140)(79, 141)
(81, 148)(82,
151)(83, 89)(84, 154)(85, 155)(87, 161)(88, 164)(92, 170)
(94, 171)(97,
175)(98, 176)(100, 182)(101, 185)(105, 192)(107, 194)
(109, 198)(111,
199)(112, 136)(114, 202)(115, 119)(117, 210)(118, 197)(121,
216)(122,

201)(123, 217)(125, 221)(127, 223)(129, 229)(130, 231)(133,
237)(137,

225)(138, 242)(139, 244)(142, 252)(143, 254)(144, 168)
(145, 259)(146,
178)(147, 263)(149, 162)(150, 264)(152, 272)(153, 273)
(156, 195)(157,
281)(158, 248)(159, 211)(160, 285)(163, 290)(165, 293)
(166, 167)(169,
295)(172, 276)(173, 174)(177, 291)(179, 188)(180, 301)
(181, 316)(184,
321)(186, 234)(187, 224)(189, 326)(190, 327)(191, 241)
(193, 215)(196,
332)(200, 338)(203, 340)(205, 341)(206, 300)(208, 247)
(209, 330)(212,
346)(213, 348)(214, 251)(218, 351)(219, 353)(220, 222)
(226, 357)(227,
297)(228, 361)(230, 363)(232, 334)(233, 325)(235, 366)
(236, 308)(238,
368)(239, 369)(240, 370)(243, 373)(245, 376)(249, 337)
(250, 377)(253,
256)(255, 380)(257, 382)(258, 311)(260, 385)(261, 386)
(262, 387)(265,
392)(266, 271)(268, 331)(269, 395)(270, 364)(274, 359)
(275, 309)(277,
406)(278, 408)(279, 347)(280, 409)(283, 343)(284, 410)
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(287, 416)(288,
292)(289, 418)(294, 426)(296, 429)(298, 305)(299, 432)
(302, 402)(303,
304)(307, 405)(310, 356)(312, 384)(313, 427)(314, 401)
(315, 434)(317,
372)(318, 438)(319, 324)(320, 440)(322, 419)(323, 442)(
328, 355)(329,
428)(333, 345)(335, 449)(336, 407)(339, 413)(342, 452)
(344, 455)(349,
460)(350, 445)(352, 463)(354, 417)(358, 468)(360, 448)
(362, 399)(365,
435)(367, 379)(371, 467)(374, 472)(375, 430)(378, 457)
(381, 465)(383,
415)(388, 461)(389, 437)(390, 479)(391, 396)(393, 414)
(394, 450)(397,
447)(398, 400)(403, 451)(404, 481)(411, 425)(420, 485)
(421, 453)(422,
454)(423, 456)(424, 466)(431, 488)(433, 487)(436, 489)
(439, 474)(441,
490)(444, 484)(446, 471)(458, 494)(459, 478)(462, 464)
(469, 493)(470,
482)(473, 496)(476, 486)(477, 495)(483, 492);

d:=q!(2, 5, 10)(3, 8, 19)(4, 11, 13)(6, 16, 15)(7, 14, 18)(
9, 23, 45)(12, 26,
53)(17, 29, 60)(20, 36, 49)(21, 39, 79)(22, 42, 44)
(24, 48, 41)(25, 50,
52)(27, 56, 91)(28, 59, 32)(30, 31, 62)(33, 68, 104)
(34, 70, 98)(35, 72,
69)(37, 75, 137)(38, 77, 78)(40, 83, 153)(43, 89, 166)
(46, 94, 84)(47,
85, 97)(51, 102, 187)(54, 107, 169)(55, 109, 111)(57,
112, 64)(58, 65,
114)(61, 115, 204)(63, 119, 211)(66, 123, 189)(67,
125, 127)(71, 131,
233)(73, 133, 93)(74, 92, 136)(76, 132, 236)(80, 144,
162)(81, 147,

262)(82, 150, 152)(86, 158, 149)(87, 160, 203)(88, 163,
165)(90, 168,

273)(95, 173, 302)(96, 174, 303)(99, 179, 183)(100, 181,
244)(101, 184,
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186)(103, 188, 224)(105, 113, 134)(106, 193, 170)(108, 197,
333)(110,
118, 212)(116, 207, 159)(117, 209, 194)(120, 215, 237)(121,
201,
191)(122, 190, 200)(124, 220, 294)(126, 222, 342)(128, 225,
325)(129,

228, 360)(130, 230, 232)(135, 192, 202)(138, 234, 365)(139,
243,

235)(140, 176, 308)(141, 248, 167)(142, 251, 289)(143, 253,
255)(145,

258, 378)(146, 260, 261)(148, 266, 265)(151, 271, 388)(154,
276,
304)(155, 172, 301)(156, 280, 267)(157, 268, 282)(161, 288,
417)(164,
292, 424)(171, 298, 180)(175, 305, 402)(177, 311, 320)(178,
312,
313)(182, 319, 242)(185, 324, 366)(195, 196, 331)(198, 329, 330)
(199,
210, 345)(205, 250, 283)(206, 284, 249)(208, 217, 328)
(213, 254,
367)(214, 349, 347)(216, 241, 370)(218, 219, 352)(221, 350, 247)
(223,
355, 426)(226, 356, 451)(227, 358, 359)(229, 270, 397)
(231, 364,
449)(238, 239, 339)(240, 338, 327)(245, 306, 375)
(246, 374, 307)(252,
379, 257)(256, 381, 279)(259, 384, 423)(263, 362, 396)
(264, 390,
391)(269, 394, 363)(272, 399, 392)(274, 401, 433)
(275, 403, 404)(277,
299, 377)(278, 407, 300)(281, 332, 409)(285, 411, 383)
(286, 414,
413)(287, 412, 368)(290, 421, 415)(291, 385, 476)
(293, 425, 354)(295,
428, 346)(296, 310, 314)(297, 315, 309)(316, 435,
389)(317, 436,
371)(318, 372, 439)(321, 373, 437)(322, 441, 323)(326,
445, 452)(334,
446, 447)(335, 448, 395)(336, 343, 454)(337, 406,
344)(340, 453,
466)(341, 408, 455)(348, 418, 465)(351, 462, 475)(353,
464, 400)(357,
434, 487)(361, 471, 450)(369, 416, 393)(376, 472, 488)
(380, 460,
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382)(386, 440, 456)(387, 479, 461)(398, 463, 480)(405,
430, 431)(410,
422, 432)(419, 484, 420)(427, 457, 486)(429, 468, 481)
(438, 474,
496)(442, 444, 491)(443, 485, 490)(458, 482, 495)(459,
494, 483)(467,
489, 473)(469, 478, 492)(470, 493, 477);

IsIsomorphic(q,PSL(2,31));

FPGroup(q);

/* aˆ5,
bˆ2,
cˆ3,
dˆ2,
(aˆ-1 * b)ˆ2,
(a, c),
(b * cˆ-1)ˆ2,
d * cˆ-1 * d * aˆ-1 * b * d * c,
a * d * cˆ-1 * b * a * d * b * c,
(aˆ-1 * d * b * d * b)ˆ2,
aˆ-1 * d * cˆ-1 * d * cˆ-1 * aˆ2 * d * a * b * d *
aˆ-1,
aˆ-1 * d * aˆ-1 * d * a * d * cˆ-1 * a * d * a * d *
aˆ-1 * d * c, */

T:=Transversal(G1,NL[2]);

e:=G1!(1, 93)(2, 37)(3, 91)(4, 46)(5, 15)(6, 45)
(7, 18)(8, 207)(9, 114)(10,
35)(11, 188)(12, 44)(13, 113)(14, 36)(16, 112)(17,
110)(19, 109)(20,
88)(21, 119)(22, 89)(23, 90)(24, 377)(25, 275)
(26, 78)(27, 274)(28,
186)(29, 111)(30, 232)(31, 66)(32, 231)(33, 154)
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(34, 92)(38, 238)(39,
239)(40, 174)(41, 240)(42, 133)(43, 127)(47, 50)
(48, 116)(49, 115)(51,
126)(52, 117)(53, 108)(54, 208)(55, 209)(56, 204)
(57, 152)(58, 103)(59,
395)(60, 423)(61, 184)(62, 590)(63, 375)(64, 486)
(65, 185)(67, 187)(68,
524)(69, 463)(70, 87)(71, 237)(72, 166)(73, 100)(74
, 165)(75, 82)(76,
461)(77, 153)(79, 155)(80, 279)(81, 230)(83, 210)
(84, 198)(85, 131)(86,
197)(94, 472)(95, 235)(96, 352)(97, 473)(98, 273)
(99, 474)(101,
475)(102, 476)(104, 259)(105, 213)(106, 128)(107,
241)(118, 122)(120,
243)(121, 242)(123, 261)(124, 258)(125, 234)(129,
418)(130, 422)(132,

316)(134, 504)(135, 373)(136, 194)(137, 464)
(138, 374)(139, 376)(140,
863)(141, 827)(142, 311)(143, 662)(144, 589)(145,
595)(146, 246)(147,
245)(148, 296)(149, 749)(150, 564)(151, 378)
(156, 379)(157, 380)(158,
803)(159, 804)(160, 726)(161, 606)(162, 665)(163,
333)(164, 202)(167,
470)(168, 338)(169, 221)(170, 471)(171, 196)
(172, 337)(173, 222)(175,
223)(176, 336)(177, 334)(178, 627)(179, 691)(180,
366)(181, 753)(182,
676)(183, 317)(189, 318)(190, 530)(191, 533)
(192, 281)(193, 534)(195,
460)(199, 424)(200, 267)(201, 425)(203, 405)(205,
404)(206, 402)(211,

257)(212, 445)(214, 626)(215, 435)(216, 762)
(217, 523)(218, 429)(219,
625)(220, 601)(224, 709)(225, 763)(226, 572)(227,
764)(228, 547)(229,
264)(233, 505)(236, 477)(244, 255)(247, 480)
(248, 481)(249, 482)(250,
478)(251, 415)(252, 414)(253, 417)(254, 479)
(256, 401)(260, 462)(262,
718)(263, 280)(265, 278)(266, 458)(268,
596)(269, 597)(270, 598)(271,
599)(272, 522)(276, 484)(277, 388)(282, 381)
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(283, 400)(284, 681)(285,
682)(286, 573)(287, 487)(288, 455)(289, 855)
(290, 871)(291, 587)(292,
914)(293, 861)(294, 986)(295, 588)(297, 566)
(298, 357)(299, 910)(300,
315)(301, 570)(302, 452)(303, 545)(304, 314)
(305, 469)(306, 468)(307,
490)(308, 491)(309, 488)(310, 489)(312, 565)
(313, 758)(319, 439)(320,
622)(321, 683)(322, 331)(323, 509)(324, 701)
(325, 944)(326, 713)(327,
913)(328, 831)(329, 727)(330, 434)(332, 360)
(335, 413)(339, 440)(340,
385)(341, 441)(342, 442)(343, 760)(344, 761)
(345, 647)(346, 594)(347,
403)(348, 636)(349, 637)(350, 416)(351, 443)
(353, 444)(354, 632)(355,
633)(356, 634)(358, 635)(359, 608)(361, 675)
(362, 810)(363, 516)(364,
744)(365, 387)(367, 677)(368, 830)(369, 624)
(370, 372)(371, 399)(382,
539)(383, 517)(384, 717)(386, 532)(389, 814)
(390, 459)(391, 398)(392,
457)(393, 815)(394, 816)(396, 699)(397, 609)
(406, 502)(407, 498)(408,
449)(409, 569)(410, 714)(411, 719)(412, 568)
(419, 706)(420, 707)(421,
687)(426, 885)(427, 819)(428, 602)(430, 654)
(431, 925)(432, 802)(433,
623)(436, 721)(437, 886)(438, 801)(446, 922)
(447, 911)(448, 849)(450,
742)(451, 961)(453, 674)(454, 962)(456, 512)
(465, 592)(466, 619)(467,
574)(483, 500)(485, 501)(492, 540)(493, 765)
(494, 543)(495, 571)(496,
708)(497, 738)(499, 631)(503, 529)(506, 754)
(507, 755)(508, 525)(510,
807)(511, 536)(513, 936)(514, 750)(515, 535)
(518, 869)(519, 870)(520,
770)(521, 872)(526, 664)(527, 663)(528, 688)
(531, 670)(537, 684)(538,
700)(541, 757)(542, 756)(544, 876)(546, 769)
(548, 951)(549, 859)(550,
582)(551, 904)(552, 860)(553, 862)(554, 926)
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(555, 839)(556, 666)(557,
988)(558, 909)(559, 879)(560, 835)(561, 989)
(562, 971)(563, 864)(567,
846)(575, 759)(576, 775)(577, 776)(578, 777)
(579, 778)(580, 779)(581,
736)(583, 771)(584, 772)(585, 773)(586, 774)(
591, 845)(593, 723)(600,
734)(603, 621)(604, 686)(605, 923)(607, 768)(
610, 930)(611, 956)(612,
657)(613, 784)(614, 817)(615, 655)(616, 878)(6
17, 954)(618, 867)(620,
680)(628, 711)(629, 678)(630, 712)(638, 689)(6
39, 959)(640, 883)(641,
653)(642, 702)(643, 703)(644, 704)(645, 705)(6
46, 649)(648, 651)(650,
735)(652, 737)(656, 739)(658, 891)(659, 892)(6
60, 797)(661, 838)(667,
978)(668, 980)(669, 812)(671, 836)(672, 953)
(673, 919)(679, 832)(685,
694)(690, 813)(692, 747)(693, 752)(695, 715)
(696, 970)(697, 940)(698,
937)(710, 848)(716, 791)(720, 927)(722, 903)(724,

868)(725, 884)(728,
985)(729, 984)(730, 873)(731, 874)(732, 792)(733,
888)(740, 964)(741,

990)(743, 808)(745, 915)(746, 881)(748, 798)(751,
793)(766, 787)(767,
788)(780, 841)(781, 942)(782, 957)(783, 822)(785,
890)(786, 889)(789,
958)(790, 805)(794, 992)(795, 907)(796, 818)(799,
811)(800, 809)(806,

912)(820, 924)(821, 929)(823, 965)(824, 899)(825,
966)(826, 967)(828,
866)(829, 851)(833, 955)(834, 844)(837, 875)(840,
843)(842, 943)(847,

949)(850, 960)(852, 969)(853, 934)(854, 857)(856,
968)(858, 893)(865,

974)(877, 982)(880, 935)(882, 987)(887, 921)(894,
931)(895, 932)(896,
933)(897, 901)(898, 900)(902, 950)(905, 939)(906,
941)(908, 977)(916,

979)(917, 975)(918, 946)(920, 981)(928, 947)(938,
952)(945, 983)(948,
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976)(963, 972)(973, 991);

e:=G1!(2, 4)(3, 9)(5, 14)(6, 7)(8, 19)(10, 22)(11, 25)
(12, 17)(13, 30)(15, 36)(16,
39)(18, 45)(21, 49)(23, 55)(24, 60)(26, 65)(27, 42)
(28, 41)(29, 72)(31,
77)(32, 58)(33, 57)(34, 84)(35, 89)(37, 46)(38, 95)
(40, 67)(43, 105)(44,
110)(47, 116)(48, 50)(51, 108)(52, 107)(53, 126)(54,
129)(56, 79)(59,
134)(61, 138)(62, 141)(63, 102)(64, 147)(66, 153)
(68, 159)(69, 98)(70,
165)(71, 168)(73, 173)(74, 87)(75, 86)(76, 179)(78,
185)(80, 191)(82,
197)(83, 123)(85, 175)(90, 209)(91, 114)(92, 198)
(94, 137)(96, 157)(97,
215)(99, 178)(100, 222)(101, 225)(103, 231)(106,
122)(109, 207)(111,
166)(112, 239)(113, 232)(115, 119)(117, 241)(118,
128)(120, 246)(121,
251)(124, 234)(125, 258)(127, 213)(130, 263)(131,
223)(132, 269)(133,
274)(135, 211)(136, 278)(139, 285)(140, 290)(142,
295)(143, 228)(144,

227)(145, 301)(146, 243)(148, 310)(149, 288)(150,
287)(152, 154)(155,

204)(158, 324)(160, 329)(162, 216)(163, 167)(164,
334)(169, 341)(170,

344)(171, 206)(172, 250)(174, 187)(176, 355)(177,
202)(180, 365)(181,
272)(182, 271)(183, 318)(184, 374)(186, 240)(188,
275)(189, 317)(190,
385)(192, 390)(193, 266)(194, 265)(195, 397)(196,
402)(199, 256)(200,
212)(201, 409)(203, 414)(205, 304)(208, 418)(210,
261)(214, 427)(217,
433)(218, 363)(219, 360)(220, 361)(221, 441)(224,
447)(226, 297)(229,
457)(233, 339)(235, 238)(236, 466)(237, 338)(242,
415)(244, 483)(245,
486)(247, 491)(248, 469)(249, 468)(252, 405)(253,
254)(255, 500)(257,

373)(260, 507)(262, 511)(264, 392)(267, 445)(268,
518)(270, 367)(273,
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463)(276, 526)(277, 529)(279, 533)(280, 422)(281,
459)(282, 372)(283,
539)(284, 541)(286, 312)(289, 548)(291, 552)(292,
554)(293, 454)(294,
559)(296, 489)(298, 568)(299, 450)(300, 545)(302,
419)(303, 315)(305,
481)(306, 482)(307, 577)(308, 480)(309, 582)(311,
588)(313, 543)(314,

404)(316, 597)(319, 321)(320, 322)(323, 501)(325,
610)(326, 612)(327,
431)(328, 520)(330, 621)(331, 622)(332, 625)(333,
470)(335, 629)(336,
633)(337, 478)(340, 530)(343, 345)(346, 420)(347,
643)(348, 498)(349,
495)(350, 496)(351, 581)(352, 380)(353, 655)(356,
661)(357, 412)(358,
411)(359, 663)(362, 668)(364, 672)(366, 387)(368,
585)(369, 438)(370,
381)(371, 517)(375, 476)(376, 682)(377, 423)(382,
400)(383, 399)(384,
686)(386, 689)(388, 503)(389, 671)(391, 537)(393,
696)(394, 514)(395,
504)(398, 684)(401, 424)(403, 703)(406, 508)(407,
636)(408, 410)(413,
678)(416, 708)(417, 479)(421, 716)(425, 569)(426,
519)(428, 436)(429,
516)(430, 515)(432, 640)(434, 603)(435, 473)(437,
729)(439, 683)(440,
505)(443, 736)(444, 615)(446, 551)(448, 567)(449,
714)(451, 667)(452,
706)(453, 745)(455, 749)(456, 715)(458, 534)(460,
609)(461, 691)(462,
755)(464, 472)(465, 756)(467, 492)(471, 761)(474,
627)(475, 763)(477,
619)(484, 664)(485, 509)(487, 564)(488, 550)(490,
776)(493, 780)(494,
758)(497, 784)(499, 656)(502, 525)(506, 544)(510,
688)(512, 695)(513,
560)(521, 799)(522, 753)(523, 623)(524, 804)(527,
608)(528, 807)(531,
809)(532, 638)(535, 654)(536, 718)(538, 694)(540,
574)(542, 592)(546,
823)(547, 662)(549, 740)(556, 747)(557, 611)(558, 8
06)(561, 833)(562,
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795)(563, 639)(565, 573)(566, 572)(570, 595)(571,
637)(575, 842)(576,

766)(578, 790)(579, 826)(580, 825)(583, 679)(584,
851)(586, 845)(587,
860)(589, 764)(590, 827)(591, 774)(593, 660)(594,
707)(596, 869)(598,
677)(599, 676)(600, 605)(601, 675)(602, 721)(604,
717)(613, 738)(614,
724)(616, 782)(617, 781)(618, 798)(620, 884)(624,
801)(626, 819)(628,
887)(630, 890)(631, 739)(634, 838)(635, 719)(641, 7
05)(642, 895)(644,
898)(645, 653)(646, 652)(647, 760)(648, 857)(649,
737)(650, 767)(651,
854)(657, 713)(658, 659)(665, 762)(666, 692)(669,
918)(670, 800)(673,
920)(674, 915)(680, 725)(681, 757)(685, 700)(687,
791)(690, 881)(697,
794)(698, 927)(701, 803)(702, 932)(704, 900)(709,
911)(710, 743)(711,
921)(712, 785)(720, 937)(722, 796)(723, 797)(726,
727)(728, 929)(730,
947)(732, 938)(733, 948)(734, 923)(735, 788)(741,
916)(742, 910)(744,
953)(746, 813)(748, 867)(750, 816)(751, 908)(754,
876)(759, 943)(765,
841)(769, 965)(770, 831)(771, 832)(772, 829)(773,
830)(775, 787)(777,
805)(778, 967)(779, 966)(783, 894)(786, 905)(789,
974)(792, 952)(793,
977)(802, 883)(808, 848)(810, 980)(811, 872)(812,
946)(814, 836)(815,
970)(817, 868)(818, 903)(820, 975)(821, 985)(822,
931)(824, 853)(828,
858)(834, 875)(835, 936)(837, 844)(840, 987)(843,
882)(846, 849)(847,
963)(850, 856)(855, 951)(859, 964)(861, 962)(863,
871)(864, 959)(865,
958)(866, 893)(870, 885)(873, 928)(877, 945)(878,
957)(879, 986)(880,
941)(886, 984)(888, 976)(889, 939)(891, 892)(896,
973)(897, 902)(899,
934)(901, 950)(904, 922)(906, 935)(907, 971)(909,
912)(913, 925)(914,
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926)(917, 924)(919, 981)(930, 944)(933, 991)(940,
992)(942, 954)(949,
972)(955, 989)(956, 988)(960, 968)(961, 978)(979,
990)(982, 983);

H<a,b,c,d,e>:=Group<a,b,c,d,e|aˆ5,bˆ2,cˆ3,dˆ2,
(aˆ-1 * b)ˆ2,(a, c),
(b*cˆ-1)ˆ2,d*cˆ-1*d*aˆ-1*b*d*c,a*d*cˆ-1*b*a*d*b*c,
(aˆ-1*d*b*d*b)ˆ2,aˆ-1*d*cˆ-1*d*cˆ-1*aˆ2*d*a*b*d* aˆ-1,
aˆ-1*d*aˆ-1*d*a*d*cˆ-1*a*d*a*d*aˆ-1*d*c,
eˆ2,(a,e), (b,e), (c,e), (d,e)>;

f,H1,k:=CosetAction(H,sub<H|Id(H)>);
s,t:=IsIsomorphic(G1,H1);

s;
t;
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Chapter 9

MAGMA Code: DCE L2(31)

S:=Sym(15);
XX:=S!(1, 2, 6, 10, 4)(3, 7, 12, 14, 9)(5, 8, 13, 15, 11);
YY:=S!(2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14);
ZZ:=S!(1, 3, 5)(2, 7, 8)(4, 9, 11)(6, 12, 13)(10, 14, 15);

/*
a:=S!(1, 13, 9, 2, 15, 3, 6, 11, 7, 10, 5, 12, 4, 8, 14);
b:=S!(1, 12, 11, 2, 14, 5, 6, 9, 8, 10, 3, 13, 4, 7, 15);

*/

N:=sub<S|XX,YY,ZZ>;
#N;

G<x,y,z,t>:=Group<x,y,z,t|yˆ2,zˆ3,(xˆ-1 * y)ˆ2,
(x, z),(y * zˆ-1)ˆ2, xˆ-5,tˆ2
, (t,y * x * z),(z*t)ˆ4,(xˆ2 * zˆ-1*t)ˆ10,(xˆ2 * z*t)ˆ3,
y * x * t * z * t * zˆ-1 * t>;

/*pi:=S!(1, 12, 11, 2, 14, 5, 6, 9, 8, 10, 3, 13, 4, 7, 15);*/

f,G1,k:=CosetAction(G,sub<G|x,y,z>);
CompositionFactors(G1);
IN:=sub<G1|f(x),f(y),f(z)>;
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sub<N|YY*XX*ZZ> eq Stabiliser(N,15);

#DoubleCosets(G,sub<G|x,y,z>,sub<G|x,y,z>);
DoubleCosets(G,sub<G|x,y,z>,sub<G|x,y,z>);
/*
{ <GrpFP, Id(G), GrpFP>,
<GrpFP, t, GrpFP>,
<GrpFP, t * x * t, GrpFP>,

<GrpFP, t * y * t, GrpFP>,
<GrpFP,t * xˆ2 * t, GrpFP>,
<GrpFP, t * x * t * y * t, GrpFP>,
<GrpFP, t * x * t * x * t, GrpFP>,
<GrpFP, t * x * zˆ-1 * t, GrpFP>,

<GrpFP, t * y * t * x * t, GrpFP>,
<GrpFP, t * x * t * xˆ-1 * t, GrpFP>,
<GrpFP, t * y * t * xˆ-1 * t, GrpFP>,
<GrpFP, t * xˆ2 * t * y * t, GrpFP>,
<GrpFP, t * x * t * x * zˆ-1 * t, GrpFP>,
<GrpFP, t * x * t * z * xˆ-1 *t, GrpFP>
<GrpFP, t * xˆ-1 * t * y * t * xˆ-1 * t, GrpFP>,
<GrpFP, t * y * t * x * t * x * t, GrpFP>,
<GrpFP, t * x * zˆ-1 * t * x * zˆ-1 *t, GrpFP>,
<GrpFP, t * x * t * xˆ-1 * t * x * t, GrpFP>,
<GrpFP, t * x * t * y *t * y * t, GrpFP>,

<GrpFP, t * x * t * y * t * x * t, GrpFP>,
<GrpFP, t * x * t * x * t * y * t, GrpFP>,
<GrpFP, t * x * t * x * t * x * t, GrpFP>,
<GrpFP, t * xˆ2 * y * t * xˆ-1 * t, GrpFP>,

<GrpFP, t * y * t * x * zˆ-1 * t, GrpFP>,
<GrpFP, t * x * zˆ-1 * t * xˆ-1 * t, GrpFP>,
}

*/

prodim:=function(pt, Q, I)
v := pt;
for i in I do

v := vˆ(Q[i]);
end for;

return v;
end function;

ts := [Id(G1): i in [1 .. 15] ];
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ts[15]:=f(t); ts[1]:=f(tˆ(z*y*xˆ-2));
ts[2]:=f(tˆ(z*xˆ-2)); ts[3]:=f(tˆ((x*z)ˆ2));
ts[4]:=f(tˆ(x*z)); ts[5]:=f(tˆ(xˆ2));
ts[6]:=f(tˆ(z*y)); ts[7]:=f(tˆ(x*y));
ts[8]:=f(tˆ(xˆ3)); ts[9]:=f(tˆ(y*xˆ2));
ts[10]:=f(tˆz); ts[11]:=f(tˆx); ts[12]:=f(tˆy);
ts[13]:=f(tˆ(xˆ4)); ts[14]:=f(tˆ(zˆ2));
cst := [null : i in [1 .. Index(G,sub<G|x,y,z>)]]
where null is [Integers() | ];

for i := 1 to 15 do
cst[prodim(1, ts, [i])] := [i];

end for;

m:=0;

for i in [1..30] do if cst[i] ne [] then m:=m+1;
end if; end for; m;

cst;

/*the code below is to investigate new
double cosets.
Here we find the equal names it might
share with other double cosets,
the order of the coset stabilizing group,
and the orbits*/

N0:=Stabiliser (N,15);
Orbits(N0);
N0s:=N0;
T0:=Transversal(N,N0s);
T0;
for i in [1..#T0] do
ss:=[15]ˆT0[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..30] do if cst[i] ne []
then m:=m+1; end if; end for; m; /*15*/
Orbits(N0);
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N02:=Stabiliser(N,[15,2]); /*need to check equal names*/
SSS:={[15,2]};
SSS:=SSSˆN;

SSS;
Seqq:=Setseq(SSS);
Seqq;

for i in [1..#SSS] do for n in IN do
if ts[15]*ts[2] eq n*ts[Rep(Seqq[i])[1]]*

ts[Rep(Seqq[i])[2]] then print Rep(Seqq[i]);
end if;
end for;
end for;

/*[ 15, 2 ]
[ 12, 4 ]*/

N02s:=N02;
for n in N do if 15ˆn eq 12 and 2ˆn eq 4 then
N02s:=sub<N|N02s,n>;
end if; end for;
#N02s;

N02s;
/*Permutation group N02s acting on a set of
cardinality 15
Order = 2
(2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14)*/
[15,2]ˆN02s;

N02:=Stabiliser(N,[15,2]);
N02;
N02:=sub<N|(2, 4)(3, 5)(6, 10)(7, 11)

(8, 9)(12, 15)(13, 14)>;
#N02;
[15,2]ˆN02;
T:=Transversal(N,N02);
for i in [1..#T] do {[15,2]ˆN02}ˆT[i];
end for;

for n in IN do if ts[15]*ts[2] eq
n*ts[12]*ts[4] then n; end if; end for;
ts[15]*ts[2] eq f(x)*ts[12]*ts[4];
/*false, we need to find what x is in f(x)
and the next code will tell us*/
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/* Add Relation */
for n in IN do if ts[15]*ts[2]
eq n*ts[12]*ts[4] then n; end if; end for;
for n in IN do if ts[15]*ts[2] eq
n*ts[12]*ts[4] then A:=n; end if; end for;
W,phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
/*function(W)
w5 := W.1ˆ2; w3 := W.3ˆ-1;
w6 := w5 * w3; return w6;
end function

*/
g:=function(W);
w5 := W.1ˆ2; w3 := W.3ˆ-1; w6 := w5 * w3;
return w6;

end function;
g(G);
/*xˆ2 * zˆ-1*/
ts[15]*ts[2] eq f(xˆ2 * zˆ-1)*ts[12]*ts[4];
/*true */

N02; #N02;
/*(2, 4)(3, 5)(6, 10)(7, 11)(8, 9)(12, 15)(13, 14)

*/
T02:=Transversal(N,N02);
for i in [1..#T02] do ss:=[15,2]ˆT02[i];
cst[prodim(1,ts,ss)]:=ss;
end for;

m:=0; for i in [1..496] do if cst[i] ne []
then m:=m+1; end if; end for; m;
/*30
[15,2] ˜ [12,4]*/
Orbits(N02);

/*we follow this process until we have reached
the total number of single cosets, this number is
(#G1/#N)-1

*/



144

/* This code below lets us know where each
double coset lives,
and we have labeled each double coset 1-24*/

f,G1,k:=CosetAction(G,sub<G|x,y,z>);
A:=[Id(G1): i in [1..24]];
A[1]:=f(t); /* 1 */
A[2]:=f(t * x * t); /*2*/
A[3]:=f(t * y * t); /*2*/
A[4]:=f(t * xˆ2 * t); /*2*/
A[5]:=f(t * x * t * y * t); /*3*/
A[6]:=f(t * x * t * x * t); /*3*/
A[7]:=f(t * x * zˆ-1 * t); /*2*/
A[8]:=f(t * y * t * x * t); /*3*/
A[9]:=f(t * x * t * xˆ-1 * t); /*3*/
A[10]:=f(t * y * t * xˆ-1 * t); /*3*/
A[11]:=f(t * xˆ2 * t * y * t); /*3*/
A[12]:=f(t * x * t * x * zˆ-1 * t); /*3*/
A[13]:=f(t * x * t * z * xˆ-1 *t); /*3*/
A[14]:=f(t * xˆ-1 * t * y * t * xˆ-1 * t); /*4*/
A[15]:=f(t * y * t * x * t * x * t); /*4*/
A[16]:=f(t * x * zˆ-1 * t * x * zˆ-1 *t); /*3*/
A[17]:=f(t * x * t * xˆ-1 * t * x * t); /*4*/
A[18]:=f(t * x * t * y *t * y * t); /*4*/
A[19]:=f(t * x * t * y * t * x * t); /*4*/
A[20]:=f(t * x * t * x * t * y * t); /*4*/
A[21]:=f(t * x * t * x * t * x * t); /*4*/
A[22]:=f(t * xˆ2 * y * t * xˆ-1 * t); /*3*/
A[23]:=f(t * y * t * x * zˆ-1 * t); /*3*/
A[24]:=f(t * x * zˆ-1 * t * xˆ-1 * t); /*3*/

/*In the code below we find our where the potential
new double coset lives after we right multiply.
Listed are a few example*/

/* [15] */
for i in [1..24] do for m, n in IN do
if ts[15]*ts[1]eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do
if ts[15]*ts[1] eq m*(A[i])ˆn then i; end if;
end for; end for;
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for i in [1..24] do for m, n in IN do
if ts[15]*ts[2] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[2] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[5] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[5] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[6] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[6] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[10] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[10] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[11] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[11] eq m*(A[i])ˆn then i; end if;
end for; end for;
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/* [ 15,4]*/
for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[1] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[1] eq m*(A[i])ˆn then i;
end if; end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[2] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[2] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[3] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[3] eq m*(A[i])ˆn then i; end if;
end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[4] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[4] eq m*(A[i])ˆn then i;
end if; end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[6] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[6] eq m*(A[i])ˆn then i;
end if; end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[9] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[9] eq m*(A[i])ˆn then i;
end if; end for; end for;
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for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[10] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[10] eq m*(A[i])ˆn then i;
end if; end for; end for;

for i in [1..24] do for m, n in IN do
if ts[15]*ts[4]*ts[14] eq m*(A[i])ˆn then "true";
end if; end for; end for;
for i in [1..24] do for m,n in IN do

if ts[15]*ts[4]*ts[14] eq m*(A[i])ˆn then i; end if;
end for; end for;

/*the following code will help us produce
the relations,
listed are a few exaples*/
[15,1] done
for m, n in IN do if ts[15]*ts[1] eq
m*(ts[15])ˆn then A:=m; B:=n; end if;
end for;

W, phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
B@rho;
g:=function(W);

return W.2;
end function;
g(G);
ts[15]*ts[1] eq f(x)*ts[15]ˆf(y);

/*for example, here we are showing that
the double coset [15,2,4] goes to [15]*/
[15,2,4]
for m, n in IN do if ts[15]*ts[2]*ts[4] eq
m*(ts[15])ˆn then A:=m; B:=n; end if; end for;

W, phi:=WordGroup(G1);
rho:=InverseWordMap(G1);
A@rho;
B@rho;
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g:=function(W);
return W.2;

end function;
g(G);
ts[15]*ts[2]*ts[4] eq f(xˆ2 * zˆ-1)*(ts[15])ˆf(y);
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