416 research outputs found

    Study of the plasma near the plasma electrode by probes and photodetachment in ECR-driven negative ion source

    No full text
    Contributions to the conference will be published, following peer review, in the American Institute of Physics conference proceedings.International audienceThe effect of the plasma electrode bias on the plasma characteristics near the extraction aperture in a large volume hybrid multicusp negative ion source, driven by 2.45 GHz microwaves, is reported. Spatially resolved negative ion and electron density measurements were performed under various pressures (1-4 mTorr) by means of electrostatic probe and photodetachment technique

    TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    Full text link
    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. This publication describes the experimental setup as well as its present status.Comment: 20 pages, 17 figure

    High‐current D −

    Get PDF
    A beam of D{sup -} ions has been produced at 7-13 keV, with currents up to 2.2 {angstrom}, using charge exchange in sodium vapor. The beam profile is bi-Gaussian with angular divergence 0.7{sup o} x 2.8{sup o} and peak current density 15 mA/cm{sup 2}. The characteristics of the beam are in excellent agreement with predictions based on atomic cross sections. The sodium vapor target is formed by a jet directed across the beam. The sodium density drops rapidly in the beamline downstream from the charge exchange region, decreasing three orders of magnitude in 15 cm. Measurement and analysis of the plasma accompanying the beam demonstrate that plasma densities nearly equal to the beam density are obtained 1 m from the charge exchange medium. The plasma produced in the sodium is thus well confined to the charge exchange region and does not propagate along the beam
    corecore