33 research outputs found
The KATRIN Pre-Spectrometer at reduced Filter Energy
The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of
the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement
of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An
ultra-low background of about b = 10 mHz is among the requirements to reach
this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E
filter type are used in a tandem configuration. This setup, however, produces a
Penning trap which could lead to increased background. We have performed test
measurements showing that the filter energy of the pre-spectrometer can be
reduced by several keV in order to diminish this trap. These measurements were
analyzed with the help of a complex computer simulation, modeling multiple
electron reflections both from the detector and the photoelectric electron
source used in our test setup.Comment: 22 pages, 12 figure
Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source
The Karlsruhe Tritium Neutrino (KATRIN) experiment will measure the absolute
mass scale of neutrinos with a sensitivity of \m_{\nu} = 200 meV/c by
high-precision spectroscopy close to the tritium beta-decay endpoint at 18.6
keV. Its Windowless Gaseous Tritium Source (WGTS) is a beta-decay source of
high intensity (/s) and stability, where high-purity molecular tritium
at 30 K is circulated in a closed loop with a yearly throughput of 10 kg. To
limit systematic effects the column density of the source has to be stabilised
at the 0.1% level. This requires extensive sensor instrumentation and dedicated
control and monitoring systems for parameters such as the beam tube
temperature, injection pressure, gas composition and others. Here we give an
overview of these systems including a dedicated Laser-Raman system as well as
several beta-decay activity monitors. We also report on results of the WGTS
demonstrator and other large-scale test experiments giving proof-of-principle
that all parameters relevant to the systematics can be controlled and monitored
on the 0.1% level or better. As a result of these works, the WGTS systematics
can be controlled within stringent margins, enabling the KATRIN experiment to
explore the neutrino mass scale with the design sensitivity.Comment: 32 pages, 13 figures. modification to title, typos correcte
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9})ââeV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
The design, construction, and commissioning of the KATRIN experiment
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns
Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source
The KArlsruhe TRItium Neutrino (KATRIN) experiment will measure the absolute mass scale of neutrinos with a sensitivity of mnu = 200 meV/c2 by high-precision spectroscopy close to the tritium beta-decay endpoint at 18.6 keV. Its Windowless Gaseous Tritium Source (WGTS) is a beta-decay source of high intensity (1011 sâ1) and stability, where high-purity molecular tritium at 30 K is circulated in a closed loop with a yearly throughput of 10 kg. To limit systematic effects the column density of the source has to be stabilized at the 10â3 level. This requires extensive sensor instrumentation and dedicated control and monitoring systems for parameters such as the beam tube temperature, injection pressure, gas composition and so on. In this paper, we give an overview of these systems including a dedicated laser-Raman system as well as several beta-decay activity monitors. We also report on the results of the WGTS demonstrator and other large-scale test experiments giving proof-of-principle that all parameters relevant to the systematics can be controlled and monitored on the 10â3 level or better. As a result of these works, the WGTS systematics can be controlled within stringent margins, enabling the KATRIN experiment to explore the neutrino mass scale with the design sensitivity
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the -electron
energy spectrum near the endpoint of tritium -decay. An integral energy analysis will be performed
by an electro-static spectrometer (âMain Spectrometerâ), an ultra-high vacuum vessel with a length
of 23.2 m, a volume of 1240m3, and a complex inner electrode system with about 120 000 individual
parts. The strong magnetic field that guides the -electrons is provided by super-conducting
solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum
gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of
non-evaporable getter strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out at 300 C, and the
performance of this system are presented in detail. The vacuum system has to maintain a pressure in
the 10 mbar range. It is demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start at the end of 2016
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of . From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation