254 research outputs found

    Review : Capripoxvirus Diseases: Current Status and Opportunities for Control

    Get PDF
    Lumpy skin disease, sheeppox and goatpox are high-impact diseases of domestic ruminants with a devastating effect on cattle, sheep and goat farming industries in endemic regions. In this article, we review the current geographical distribution, economic impact of an outbreak, epidemiology, transmission and immunity of capripoxvirus. The special focus of the article is to scrutinize the use of currently available vaccines to investigate the resource needs and challenges that will have to be overcome to improve disease control and eradication, and progress on the development of safer and more effective vaccines. In addition, field evaluation of the efficacy of the vaccines and the genomic database available for poxviruses are discussed.Peer reviewe

    Effect of Stress on Viral–Bacterial Synergy in Bovine Respiratory Disease: Novel Mechanisms to Regulate Inflammation

    Get PDF
    The severity of bovine respiratory infections has been linked to a variety of factors, including environmental and nutritional changes, transportation, and social reorganization of weaned calves. Fatal respiratory infections, however, usually occur when a primary viral infection compromises host defences and enhances the severity of a secondary bacterial infection. This viral–bacterial synergy can occur by a number of different mechanisms and disease challenge models have been developed to analyse host responses during these respiratory infections. A primary bovine herpesvirus-1 (BHV-1) respiratory infection followed by a secondary challenge with Mannheimia haemolytica results in fatal bovine respiratory disease (BRD) and host responses to these two pathogens have been studied extensively. We used this disease model to demonstrate that stress significantly altered the viral–bacterial synergy resulting in fatal BRD. Functional genomic analysis revealed that BHV-1 infection enhanced toll-like receptors (TLR) expression and increased pro-inflammatory responses which contribute to the severity of a Mannheimia haemolytica infection. TLRs play a critical role in detecting bacterial infections and inducing pro-inflammatory responses. It is difficult to understand, however, how stress-induced corticosteroids could enhance this form of viral–bacterial synergy. Nuclear translocation of the glucocorticoid receptor activates cell signalling pathways which inhibit both TLR signalling and pro-inflammatory responses. The apparent conundrum between stress-induced corticosteroids and enhanced BRD susceptibility is discussed in terms of present data and previous investigations of stress and respiratory disease

    Genomic and protein structural maps of adaptive evolution of human influenza a virus to increased virulence in the mouse

    Get PDF
    Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse

    Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment

    Get PDF
    BACKGROUND: Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. CONCLUSIONS/SIGNIFICANCE: This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance

    Widespread modulation of gene expression by copy number variation in skeletal muscle

    Get PDF
    Copy number variation (CNV) is a frequently observed deviation from the diploid state due to duplication or deletion of genomic regions. Although intensively analyzed for association with diseases and production traits, the specific mechanisms and extent by which such variations affect the phenotype are incompletely understood. We present an integrative study on CNV and genome-wide gene expression in Brazilian Bos indicus cattle. We analyzed CNVs inferred from SNP-chip data for effects on gene expression measured with RNA-seq in skeletal muscle samples of 183 steers. Local effects, where expression changes coincided with CNVs in the respective genes, were restricted to immune genes. Distal effects were attributable to several high-impact CNVs that modulated remote expression in an orchestrated and intertwined fashion. These CNVs were located in the vicinity of major skeletal muscle pathway regulators and associated genes were enriched for proteolysis, autophagy, and muscle structure development. From association analysis between CNVs and several meat quality and production traits, we found CNV-associated expression effects to also manifest at the phenotype level. Based on genome sequences of the population founders, we further demonstrate that CNVs with impact on expression and phenotype are passed on from one generation to another

    In Vivo Electroporation Enhances the Immunogenicity of an HIV-1 DNA Vaccine Candidate in Healthy Volunteers

    Get PDF
    DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987

    Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization

    Get PDF
    Dry-coated microprojections can deliver vaccine to abundant antigen-presenting cells in the skin and induce efficient immune responses and the dry-coated vaccines are expected to be thermostable at elevated temperatures. In this paper, we show that we have dramatically improved our previously reported gas-jet drying coating method and greatly increased the delivery efficiency of coating from patch to skin to from 6.5% to 32.5%, by both varying the coating parameters and removing the patch edge. Combined with our previous dose sparing report of influenza vaccine delivery in a mouse model, the results show that we now achieve equivalent protective immune responses as intramuscular injection (with the needle and syringe), but with only 1/30th of the actual dose. We also show that influenza vaccine coated microprojection patches are stable for at least 6 months at 23 degrees C. inducing comparable immunogenicity with freshly coated patches. The dry-coated microprojection patches thus have key and unique attributes in ultimately meeting the medical need in certain low-resource regions with low vaccine affordability and difficulty in maintaining "cold-chain" for vaccine storage and transport. (C) 2011 Elsevier B.V. All rights reserved

    Immunity to Bovine Herpesvirus 1: II. Adaptive Immunity and Vaccinology

    Get PDF
    Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease
    corecore