8 research outputs found

    Non stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation Raman scattering investigation

    Get PDF
    The cation disorder in Cu2ZnSnS4 thin films grown by flash evaporation of ZnS, CuS and SnS binary compounds has been studied by Raman spectroscopy. Process parameters such as the substrate temperature during the evaporation and the Ar pressure in the post-thermal treatment determined the samples' composition and Raman spectra. As a measure of cation disorder, the half-width and relative intensity of the Raman band peaking at 331-332 cm-1 is analysed. Comparison of the spectra for different samples of known composition showed that the relative intensity of the 331 cm-1 defect peak correlates with the previously reported theoretical prediction about enhancement of antisite defect formation in Cu2ZnSnS4 under "Cu-poor, Zn-rich" conditions. For "Cu-rich, Zn-poor" films, further experimental confirmation was obtained of the previously detected effect of the enhancement of cation disorder under intense optical excitationThis research is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007-2013/ under REA grant greement 269167 (PVICOKEST), the Spanish MINECO project (KEST- PV, ENE2010-21541-C03) and the OPTEC grant. RC acknowledges financial support from Spanish MINECO within the program Ramon y Cajal (RYC-2011-08521

    ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΡƒΡ‚Π²ΠΎΡ€Π΅Π½Π½Ρ 4-амінобСнзгідроксамової кислоти Π· Ρ–ΠΎΠ½Π°ΠΌΠΈ Ru(III), Rh(III) Ρ‚Π° Pd(II)

    Get PDF
    A series of hydroxamate and hydroximate complexes of Ru(III), Rh(III) and Pd(II) with 4-amino-N-hydroxybenzamide (AHBA) has been synthesized, and their IR, UV-Vis and NMR 1H spectral characteristics have been studied.It has been found that AHBA interacts with metal ions mainly by the type of O,O’-coordination, wherein the structure of the complexes is largely dependent on the pH of medium. In acidic and weakly acidic media AHBA predominantly forms hydroxamate complexes with coordination of hydroxamic acid in neutral or mono deprotonated states. In NMR 1H spectra of hydroxamate complexes a singlet of NH protones is shifted upfield, which is associated with formation of cyclic metal chelates. In alkaline or near neutral media AHBA reacts as dianion to form anionic type hydroxamate complexes. In NMR 1H spectra of such complexes the singlets of NH and OH are absent. Depending on the nature of the metal, the central ion forms a square-planar [complexes of Pd(II)] or octahedral [complexes of Ru(III)] coordination unit, and it confirms the presence of d-d transition in electronic absorption spectra. The most characteristic of absorption bands in IR-spectra of the complexes are oxime group N–O of stretching vibrations that undergo low frequency offset by DΞ½ = -(24–44) cm-1. The results obtained, as well as analysis of the published data show that increase of pH in the complexation reactions of hydroxamic acids leads to bidentate coordination of AHBA with formation of five-membered metallocycles.Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½ ряд гидроксаматных ΠΈ гидроксиматных комплСксов Ru(III), Rh(III) ΠΈ Pd(II) с 4-Π°ΠΌΠΈΠ½ΠΎ-N-гидроксибСнзамидом (АГБА) ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΡ… ИК, ЭБП ΠΈ ЯМР 1Н ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ характСристики. УстановлСно, Ρ‡Ρ‚ΠΎ АГБА взаимодСйствуСт с ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΏΠΎ Ρ‚ΠΈΠΏΡƒ O,O’-ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΈ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ строСниС комплСксов Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ стСпСни зависит ΠΎΡ‚ рН срСды. Π’ кислой ΠΈ слабокислой срСдах АГБА ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ прСимущСствСнно гидроксаматныС комплСксы с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠ΅ΠΉ гидроксамовой кислоты Π² Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΌΠΎΠ½ΠΎΠ΄Π΅ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ°Ρ…. Π’ ЯМР 1Н спСктрах гидроксаматных комплСксов синглСт NH ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° смСщаСтся Π² сильноС ΠΏΠΎΠ»Π΅, Ρ‡Ρ‚ΠΎ связано с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ…Π΅Π»Π°Ρ‚Π½Ρ‹Ρ… Ρ†ΠΈΠΊΠ»ΠΎΠ².Π’ Ρ‰Π΅Π»ΠΎΡ‡Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΊ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ срСдах АГБА взаимодСйствуСт ΠΊΠ°ΠΊ Π΄ΠΈΠ°Π½ΠΈΠΎΠ½, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ гидроксиматных комплСксов Π°Π½ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. Π’ ЯМР 1Н спСктрах Ρ‚Π°ΠΊΠΈΡ… комплСксов синглСты NH ΠΈ OH ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. Π’ зависимости ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΠΌΠ΅Ρ‚Π°Π»Π»Π° Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠΎΠ½ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΡƒΠ·Π΅Π» Π² Ρ„ΠΎΡ€ΠΌΠ΅ плоского ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° [комплСксы Pd(II)] ΠΈΠ»ΠΈ октаэдра [комплСксы Ru(III) ΠΈ Rh(III)], Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ d-d ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² Π² элСктронных спСктрах поглощСния. Π’ ИК-спСктрах комплСксов Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ характСристичСскими ΡΠ²Π»ΡΡŽΡ‚ΡΡ полосы поглощСния Π²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ связи N–O оксимной Π³Ρ€ΡƒΠΏΠΏΡ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€Π΅Ρ‚Π΅Ρ€ΠΏΠ΅Π²Π°ΡŽΡ‚ низкочастотноС смСщСниС Π½Π° DΞ½ = -(24–44) см-1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π² рСакциях комплСксообразования гидроксамовых кислот с ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ рН срСды способствуСт Π±ΠΈΠ΄Π΅Π½Ρ‚Π°Ρ‚Π½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΠΈ АГБА с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ пятичлСнных ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ†ΠΈΠΊΠ»ΠΎΠ² Ρ…Π΅Π»Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°.Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ ряд гідроксаматних Ρ‚Π° гідроксиматних комплСксів Ru(III), Rh(III) Ρ– Pd(II) Ρ–Π· 4-Π°ΠΌΡ–Π½ΠΎ-N-гідроксибСнзамідом (АГБА) Ρ‚Π° дослідТСно Ρ—Ρ… Π†Π§, Π•Π‘ΠŸ Ρ‚Π° ЯМР 1Н ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ– характСристики. ВстановлСно, Ρ‰ΠΎ АГБА Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ” Π· Ρ–ΠΎΠ½Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Ρ–Π² Π³ΠΎΠ»ΠΎΠ²Π½ΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ Π·Π° Ρ‚ΠΈΠΏΠΎΠΌ O,O’-ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†Ρ–Ρ—, ΠΏΡ€ΠΈΡ‡ΠΎΠΌΡƒ Π±ΡƒΠ΄ΠΎΠ²Π° комплСксів Π·Π½Π°Ρ‡Π½ΠΎΡŽ ΠΌΡ–Ρ€ΠΎΡŽ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ рН сСрСдовища. Π’ кислому Ρ‚Π° слабокислому сСрСдовищах АГБА ΡƒΡ‚Π²ΠΎΡ€ΡŽΡ” ΠΏΠ΅Ρ€Π΅Π²Π°ΠΆΠ½ΠΎ гідроксаматні комплСкси Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†Ρ–Ρ”ΡŽ гідроксамової кислоти Π² Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ–ΠΉ Π°Π±ΠΎ ΠΌΠΎΠ½ΠΎΠ΄Π΅ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ²Π°Π½Ρ–ΠΉ Ρ„ΠΎΡ€ΠΌΠ°Ρ…. Π’ ЯМР 1Н спСктрах гідроксаматних комплСксів синглСт NH ΠΏΡ€ΠΎΡ‚ΠΎΠ½Π° Π·ΡΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ Π² сильнС ΠΏΠΎΠ»Π΅, Ρ‰ΠΎ пов’язано Π· утворСнням ΠΌΠ΅Ρ‚Π°Π»ΠΎΡ…Π΅Π»Π°Ρ‚Π½ΠΈΡ… Ρ†ΠΈΠΊΠ»Ρ–Π². Π’ Π»ΡƒΠΆΠ½ΠΎΠΌΡƒ Π°Π±ΠΎ Π±Π»ΠΈΠ·ΡŒΠΊΠΎΠΌΡƒ Π΄ΠΎ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ сСрСдовищах АГБА Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ” як Π΄Ρ–Π°Π½Ρ–ΠΎΠ½, Ρ‰ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ утворСння гідроксиматних комплСксів Π°Π½Ρ–ΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ. Π’ ЯМР 1Н спСктрах Ρ‚Π°ΠΊΠΈΡ… комплСксів синглСти NH Ρ‚Π° ОН ΠΏΡ€ΠΎΡ‚ΠΎΠ½Ρ–Π² відсутні. Π’ залСТності Π²Ρ–Π΄ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ ΠΌΠ΅Ρ‚Π°Π»Ρƒ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΈΠΉ Ρ–ΠΎΠ½ Ρ„ΠΎΡ€ΠΌΡƒΡ” ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†Ρ–ΠΉΠ½ΠΈΠΉ Π²ΡƒΠ·ΠΎΠ» Ρƒ Ρ„ΠΎΡ€ΠΌΡ– плоского ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° [комплСкси Pd(II)] Π°Π±ΠΎ ΠΎΠΊΡ‚Π°Π΅Π΄Ρ€Π° [комплСкси Ru(III) Ρ– Rh(III)], Ρ‰ΠΎ ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΡƒΡ”Ρ‚ΡŒΡΡ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŽ d-d ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ–Π² Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… спСктрах поглинання. Π’ Π†Π§-спСктрах комплСксів Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ характСристичними Ρ” смуги поглинання Π²Π°Π»Π΅Π½Ρ‚Π½ΠΈΡ… коливань зв’язку N–O оксимної Π³Ρ€ΡƒΠΏΠΈ, які Π·Π°Π·Π½Π°ΡŽΡ‚ΡŒ Π½ΠΈΠ·ΡŒΠΊΠΎΡ‡Π°ΡΡ‚ΠΎΡ‚Π½ΠΎΠ³ΠΎ зміщСння Π½Π° DΞ½ = -(24–44) см-1. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ, Π° Ρ‚Π°ΠΊΠΎΠΆ Π°Π½Π°Π»Ρ–Π· Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ, Ρ‰ΠΎ Π² рСакціях комплСксоутворСння гідроксамових кислот Π· Ρ–ΠΎΠ½Π°ΠΌΠΈ ΠΏΠ΅Ρ€Π΅Ρ…Ρ–Π΄Π½ΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Ρ–Π² підвищСння рН сСрСдовища сприяє Π±Ρ–Π΄Π΅Π½Ρ‚Π°Ρ‚Π½Ρ–ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†Ρ–Ρ— АГБА Π· утворСнням п’ятичлСнних ΠΌΠ΅Ρ‚Π°Π»ΠΎΡ†ΠΈΠΊΠ»Ρ–Π² Ρ…Π΅Π»Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΡƒ

    Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation

    Full text link
    The cation disorder in Cu2ZnSnS4 thin films grown by flash evaporation of ZnS, CuS and SnS binary compounds has been studied by Raman spectroscopy. Process parameters such as the substrate temperature during the evaporation and the Ar pressure in the post-thermal treatment determined the samples' composition and Raman spectra. As a measure of cation disorder, the half-width and relative intensity of the Raman band peaking at 331-332 cm-1 is analysed. Comparison of the spectra for different samples of known composition showed that the relative intensity of the 331 cm-1 defect peak correlates with the previously reported theoretical prediction about enhancement of antisite defect formation in Cu2ZnSnS4 under "Cu-poor, Zn-rich" conditions. For "Cu-rich, Zn-poor" films, further experimental confirmation was obtained of the previously detected effect of the enhancement of cation disorder under intense optical excitationThis research is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Program FP7/2007-2013/ under REA grant greement 269167 (PVICOKEST), the Spanish MINECO project (KEST- PV, ENE2010-21541-C03) and the OPTEC grant. RC acknowledges financial support from Spanish MINECO within the program Ramon y Cajal (RYC-2011-08521

    Raman mapping of MoS2 at Cu2ZnSnS4/Mo interface in thin film

    Full text link
    A Cu2ZnSnS4 (CZTS) thin film deposited on Mo contact film using direct current magnetron sputtering and sulfurized is studied. The morphological and structural investigations are focused on the interface between the CZTS film and the back Mo layer. The film is shown to be polycrystalline with an average grain size of 0.8 Β΅m and of a high conductivity of the grain boundaries. It is also characterized by a suitable elemental composition with a noncritical deviation from the stoichiometry across the film depth. This results in the optical bandgap of 1.48 eV, which is optimal for solar cell absorbers. Raman spectra show low FWHMs of two A-symmetry dominant bands for CZTS thin film, which confirms a high quality of the crystal structure over a large area. At the same time, ZnS secondary phase is found on the film surface, while MoS2 is detected in the depth using a resonant excitation. The Raman mapping shows a non-uniform distribution of MoS2 along the interface between the CZTS film and the back Mo layerThis research was supported in part by National Natural Science Foundation of China [61525503/61620106016/61835009/81727804/61722508/61604098]; the United Program of National Natural Science Foundation of China with Shenzhen [U1613212]; (Key) Project of Department of Education of Guangdong Province [2015KGJHZ002/ 2016KCXTD007]; Guangdong Natural Science Foundation [2014A030312008]; Shenzhen Basic Research Project [JCYJ20170817094728456]; Basic Research Program of the National Academy of Science of Ukraine β€œFundamental problems of new nanomaterials and nanotechnology” no. [0115U005037]; and Ministry of Education and Science of Ukraine [0119U100308

    RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers

    Get PDF
    Abstract In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure
    corecore