8 research outputs found
Non stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation Raman scattering investigation
The cation disorder in Cu2ZnSnS4 thin films grown by flash evaporation of ZnS, CuS and SnS binary compounds has been studied by Raman spectroscopy. Process parameters such as the substrate temperature during the evaporation and the Ar pressure in the post-thermal treatment determined the samples' composition and Raman spectra. As a measure of cation disorder, the half-width and relative intensity of the Raman band peaking at 331-332 cm-1 is analysed. Comparison of the spectra for different samples of known composition showed that the relative intensity of the 331 cm-1 defect peak correlates with the previously reported theoretical prediction about enhancement of antisite defect formation in Cu2ZnSnS4 under "Cu-poor, Zn-rich" conditions. For "Cu-rich, Zn-poor" films, further experimental confirmation was obtained of the previously detected effect of the enhancement of cation disorder under intense optical excitationThis research is supported by the People Programme (Marie Curie Actions) of the European Unionβs Seventh Framework Program FP7/2007-2013/ under REA grant greement 269167 (PVICOKEST), the Spanish MINECO project (KEST- PV, ENE2010-21541-C03) and the OPTEC grant. RC acknowledges financial support from Spanish MINECO within the program Ramon y Cajal (RYC-2011-08521
ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ 4-Π°ΠΌΡΠ½ΠΎΠ±Π΅Π½Π·Π³ΡΠ΄ΡΠΎΠΊΡΠ°ΠΌΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Π· ΡΠΎΠ½Π°ΠΌΠΈ Ru(III), Rh(III) ΡΠ° Pd(II)
A series of hydroxamate and hydroximate complexes of Ru(III), Rh(III) and Pd(II) with 4-amino-N-hydroxybenzamide (AHBA) has been synthesized, and their IR, UV-Vis and NMR 1H spectral characteristics have been studied.It has been found that AHBA interacts with metal ions mainly by the type of O,Oβ-coordination, wherein the structure of the complexes is largely dependent on the pH of medium. In acidic and weakly acidic media AHBA predominantly forms hydroxamate complexes with coordination of hydroxamic acid in neutral or mono deprotonated states. In NMR 1H spectra of hydroxamate complexes a singlet of NH protones is shifted upfield, which is associated with formation of cyclic metal chelates. In alkaline or near neutral media AHBA reacts as dianion to form anionic type hydroxamate complexes. In NMR 1H spectra of such complexes the singlets of NH and OH are absent. Depending on the nature of the metal, the central ion forms a square-planar [complexes of Pd(II)] or octahedral [complexes of Ru(III)] coordination unit, and it confirms the presence of d-d transition in electronic absorption spectra. The most characteristic of absorption bands in IR-spectra of the complexes are oxime group NβO of stretching vibrations that undergo low frequency offset by DΞ½ = -(24β44) cm-1. The results obtained, as well as analysis of the published data show that increase of pH in the complexation reactions of hydroxamic acids leads to bidentate coordination of AHBA with formation of five-membered metallocycles.Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ ΡΡΠ΄ Π³ΠΈΠ΄ΡΠΎΠΊΡΠ°ΠΌΠ°ΡΠ½ΡΡ
ΠΈ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠΌΠ°ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Ru(III), Rh(III) ΠΈ Pd(II) Ρ 4-Π°ΠΌΠΈΠ½ΠΎ-N-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·Π°ΠΌΠΈΠ΄ΠΎΠΌ (ΠΠΠΠ) ΠΈ ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΈΡ
ΠΠ, ΠΠ‘Π ΠΈ Π―ΠΠ 1Π ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΠΠΠ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Ρ ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΏΠΎ ΡΠΈΠΏΡ O,Oβ-ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠ ΡΡΠ΅Π΄Ρ. Π ΠΊΠΈΡΠ»ΠΎΠΉ ΠΈ ΡΠ»Π°Π±ΠΎΠΊΠΈΡΠ»ΠΎΠΉ ΡΡΠ΅Π΄Π°Ρ
ΠΠΠΠ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π³ΠΈΠ΄ΡΠΎΠΊΡΠ°ΠΌΠ°ΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π³ΠΈΠ΄ΡΠΎΠΊΡΠ°ΠΌΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Π² Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΠΌΠΎΠ½ΠΎΠ΄Π΅ΠΏΡΠΎΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΠ°Ρ
. Π Π―ΠΠ 1Π ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
Π³ΠΈΠ΄ΡΠΎΠΊΡΠ°ΠΌΠ°ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΠΈΠ½Π³Π»Π΅Ρ NH ΠΏΡΠΎΡΠΎΠ½Π° ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅, ΡΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΡ
Π΅Π»Π°ΡΠ½ΡΡ
ΡΠΈΠΊΠ»ΠΎΠ².Π ΡΠ΅Π»ΠΎΡΠ½ΠΎΠΉ ΠΈΠ»ΠΈ Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΊ Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Π°Ρ
ΠΠΠΠ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΠΊΠ°ΠΊ Π΄ΠΈΠ°Π½ΠΈΠΎΠ½, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠΌΠ°ΡΠ½ΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π°Π½ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ°. Π Π―ΠΠ 1Π ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΡΠ°ΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² ΡΠΈΠ½Π³Π»Π΅ΡΡ NH ΠΈ OH ΠΏΡΠΎΡΠΎΠ½ΠΎΠ² ΠΎΡΡΡΡΡΡΠ²ΡΡΡ. Π Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΌΠ΅ΡΠ°Π»Π»Π° ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΈΠΎΠ½ ΡΠΎΡΠΌΠΈΡΡΠ΅Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΎΠ½Π½ΡΠΉ ΡΠ·Π΅Π» Π² ΡΠΎΡΠΌΠ΅ ΠΏΠ»ΠΎΡΠΊΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° [ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Pd(II)] ΠΈΠ»ΠΈ ΠΎΠΊΡΠ°ΡΠ΄ΡΠ° [ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡ Ru(III) ΠΈ Rh(III)], ΡΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ d-d ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ² Π² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ. Π ΠΠ-ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ»ΠΎΡΡ ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½ΠΈΡ Π²Π°Π»Π΅Π½ΡΠ½ΡΡ
ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·ΠΈ NβO ΠΎΠΊΡΠΈΠΌΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠ΅ΡΠ΅ΡΠΏΠ΅Π²Π°ΡΡ Π½ΠΈΠ·ΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΠΎΠ΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π° DΞ½ = -(24β44) ΡΠΌ-1. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π°Π½Π°Π»ΠΈΠ· Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ Π² ΡΠ΅Π°ΠΊΡΠΈΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΊΡΠ°ΠΌΠΎΠ²ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ Ρ ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄Π½ΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ ΡΡΠ΅Π΄Ρ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ Π±ΠΈΠ΄Π΅Π½ΡΠ°ΡΠ½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΠΈ ΠΠΠΠ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΡΠΈΡΠ»Π΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΡΠΈΠΊΠ»ΠΎΠ² Ρ
Π΅Π»Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ°.Π‘ΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΎ ΡΡΠ΄ Π³ΡΠ΄ΡΠΎΠΊΡΠ°ΠΌΠ°ΡΠ½ΠΈΡ
ΡΠ° Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠΌΠ°ΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² Ru(III), Rh(III) Ρ Pd(II) ΡΠ· 4-Π°ΠΌΡΠ½ΠΎ-N-Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠ±Π΅Π½Π·Π°ΠΌΡΠ΄ΠΎΠΌ (ΠΠΠΠ) ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΡΡ
ΠΠ§, ΠΠ‘Π ΡΠ° Π―ΠΠ 1Π ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΠΠΠΠ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π· ΡΠΎΠ½Π°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π»ΡΠ² Π³ΠΎΠ»ΠΎΠ²Π½ΠΈΠΌ ΡΠΈΠ½ΠΎΠΌ Π·Π° ΡΠΈΠΏΠΎΠΌ O,Oβ-ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡΡ, ΠΏΡΠΈΡΠΎΠΌΡ Π±ΡΠ΄ΠΎΠ²Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² Π·Π½Π°ΡΠ½ΠΎΡ ΠΌΡΡΠΎΡ Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ ΡΠ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ°. Π ΠΊΠΈΡΠ»ΠΎΠΌΡ ΡΠ° ΡΠ»Π°Π±ΠΎΠΊΠΈΡΠ»ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ°Ρ
ΠΠΠΠ ΡΡΠ²ΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ½ΠΎ Π³ΡΠ΄ΡΠΎΠΊΡΠ°ΠΌΠ°ΡΠ½Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈ Π· ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡΡΡ Π³ΡΠ΄ΡΠΎΠΊΡΠ°ΠΌΠΎΠ²ΠΎΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ Π² Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΡΠΉ Π°Π±ΠΎ ΠΌΠΎΠ½ΠΎΠ΄Π΅ΠΏΡΠΎΡΠΎΠ½ΠΎΠ²Π°Π½ΡΠΉ ΡΠΎΡΠΌΠ°Ρ
. Π Π―ΠΠ 1Π ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
Π³ΡΠ΄ΡΠΎΠΊΡΠ°ΠΌΠ°ΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² ΡΠΈΠ½Π³Π»Π΅Ρ NH ΠΏΡΠΎΡΠΎΠ½Π° Π·ΡΡΠ²Π°ΡΡΡΡΡ Π² ΡΠΈΠ»ΡΠ½Π΅ ΠΏΠΎΠ»Π΅, ΡΠΎ ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΎ Π· ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌ ΠΌΠ΅ΡΠ°Π»ΠΎΡ
Π΅Π»Π°ΡΠ½ΠΈΡ
ΡΠΈΠΊΠ»ΡΠ². Π Π»ΡΠΆΠ½ΠΎΠΌΡ Π°Π±ΠΎ Π±Π»ΠΈΠ·ΡΠΊΠΎΠΌΡ Π΄ΠΎ Π½Π΅ΠΉΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ°Ρ
ΠΠΠΠ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΡΠΊ Π΄ΡΠ°Π½ΡΠΎΠ½, ΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π³ΡΠ΄ΡΠΎΠΊΡΠΈΠΌΠ°ΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² Π°Π½ΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΡ. Π Π―ΠΠ 1Π ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΡΠ°ΠΊΠΈΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² ΡΠΈΠ½Π³Π»Π΅ΡΠΈ NH ΡΠ° ΠΠ ΠΏΡΠΎΡΠΎΠ½ΡΠ² Π²ΡΠ΄ΡΡΡΠ½Ρ. Π Π·Π°Π»Π΅ΠΆΠ½ΠΎΡΡΡ Π²ΡΠ΄ ΠΏΡΠΈΡΠΎΠ΄ΠΈ ΠΌΠ΅ΡΠ°Π»Ρ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΈΠΉ ΡΠΎΠ½ ΡΠΎΡΠΌΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡΠΉΠ½ΠΈΠΉ Π²ΡΠ·ΠΎΠ» Ρ ΡΠΎΡΠΌΡ ΠΏΠ»ΠΎΡΠΊΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° [ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈ Pd(II)] Π°Π±ΠΎ ΠΎΠΊΡΠ°Π΅Π΄ΡΠ° [ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΈ Ru(III) Ρ Rh(III)], ΡΠΎ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΆΡΡΡΡΡΡ Π½Π°ΡΠ²Π½ΡΡΡΡ d-d ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΡΠ² Π² Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΠΏΠΎΠ³Π»ΠΈΠ½Π°Π½Π½Ρ. Π ΠΠ§-ΡΠΏΠ΅ΠΊΡΡΠ°Ρ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΡΠ² Π½Π°ΠΉΠ±ΡΠ»ΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΡΠ½ΠΈΠΌΠΈ Ρ ΡΠΌΡΠ³ΠΈ ΠΏΠΎΠ³Π»ΠΈΠ½Π°Π½Π½Ρ Π²Π°Π»Π΅Π½ΡΠ½ΠΈΡ
ΠΊΠΎΠ»ΠΈΠ²Π°Π½Ρ Π·Π²βΡΠ·ΠΊΡ NβO ΠΎΠΊΡΠΈΠΌΠ½ΠΎΡ Π³ΡΡΠΏΠΈ, ΡΠΊΡ Π·Π°Π·Π½Π°ΡΡΡ Π½ΠΈΠ·ΡΠΊΠΎΡΠ°ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π·ΠΌΡΡΠ΅Π½Π½Ρ Π½Π° DΞ½ = -(24β44) ΡΠΌ-1. ΠΡΡΠΈΠΌΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ, Π° ΡΠ°ΠΊΠΎΠΆ Π°Π½Π°Π»ΡΠ· Π»ΡΡΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
Π΄Π°Π½ΠΈΡ
ΠΏΠΎΠΊΠ°Π·ΡΡΡΡ, ΡΠΎ Π² ΡΠ΅Π°ΠΊΡΡΡΡ
ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π³ΡΠ΄ΡΠΎΠΊΡΠ°ΠΌΠΎΠ²ΠΈΡ
ΠΊΠΈΡΠ»ΠΎΡ Π· ΡΠΎΠ½Π°ΠΌΠΈ ΠΏΠ΅ΡΠ΅Ρ
ΡΠ΄Π½ΠΈΡ
ΠΌΠ΅ΡΠ°Π»ΡΠ² ΠΏΡΠ΄Π²ΠΈΡΠ΅Π½Π½Ρ ΡΠ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ° ΡΠΏΡΠΈΡΡ Π±ΡΠ΄Π΅Π½ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡΡ ΠΠΠΠ Π· ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌ ΠΏβΡΡΠΈΡΠ»Π΅Π½Π½ΠΈΡ
ΠΌΠ΅ΡΠ°Π»ΠΎΡΠΈΠΊΠ»ΡΠ² Ρ
Π΅Π»Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΡ
Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation
The cation disorder in Cu2ZnSnS4 thin films grown by flash evaporation of ZnS, CuS and SnS binary compounds has been studied by Raman spectroscopy. Process parameters such as the substrate temperature during the evaporation and the Ar pressure in the post-thermal treatment determined the samples' composition and Raman spectra. As a measure of cation disorder, the half-width and relative intensity of the Raman band peaking at 331-332 cm-1 is analysed. Comparison of the spectra for different samples of known composition showed that the relative intensity of the 331 cm-1 defect peak correlates with the previously reported theoretical prediction about enhancement of antisite defect formation in Cu2ZnSnS4 under "Cu-poor, Zn-rich" conditions. For "Cu-rich, Zn-poor" films, further experimental confirmation was obtained of the previously detected effect of the enhancement of cation disorder under intense optical excitationThis research is supported by the People Programme (Marie Curie Actions) of the European Unionβs Seventh Framework Program FP7/2007-2013/ under REA grant greement 269167 (PVICOKEST), the Spanish MINECO project (KEST- PV, ENE2010-21541-C03) and the OPTEC grant. RC acknowledges financial support from Spanish MINECO within the program Ramon y Cajal (RYC-2011-08521
Raman mapping of MoS2 at Cu2ZnSnS4/Mo interface in thin film
A Cu2ZnSnS4 (CZTS) thin film deposited on Mo contact film using direct current magnetron sputtering and sulfurized is studied. The morphological and structural investigations are focused on the interface between the CZTS film and the back Mo layer. The film is shown to be polycrystalline with an average grain size of 0.8 Β΅m and of a high conductivity of the grain boundaries. It is also characterized by a suitable elemental composition with a noncritical deviation from the stoichiometry across the film depth. This results in the optical bandgap of 1.48 eV, which is optimal for solar cell absorbers. Raman spectra show low FWHMs of two A-symmetry dominant bands for CZTS thin film, which confirms a high quality of the crystal structure over a large area. At the same time, ZnS secondary phase is found on the film surface, while MoS2 is detected in the depth using a resonant excitation. The Raman mapping shows a non-uniform distribution of MoS2 along the interface between the CZTS film and the back Mo layerThis research was supported in part by National Natural Science Foundation of China [61525503/61620106016/61835009/81727804/61722508/61604098]; the United Program of National Natural Science Foundation of China with Shenzhen [U1613212]; (Key) Project of Department of Education of Guangdong Province [2015KGJHZ002/ 2016KCXTD007]; Guangdong Natural Science Foundation [2014A030312008]; Shenzhen Basic Research Project [JCYJ20170817094728456]; Basic Research Program of the National Academy of Science of Ukraine βFundamental problems of new nanomaterials and nanotechnologyβ no. [0115U005037]; and Ministry of Education and Science of Ukraine [0119U100308
RF Electromagnetic Field Treatment of Tetragonal Kesterite CZTSSe Light Absorbers
Abstract In this work, we propose a method to improve electro-optical and structural parameters of light-absorbing kesterite materials. It relies on the application of weak power hydrogen plasma discharges using electromagnetic field of radio frequency range, which improves homogeneity of the samples. The method allows to reduce strain of light absorbers and is suitable for designing solar cells based on multilayered thin film structures. Structural characteristics of tetragonal kesterite Cu2ZnSn(S, Se)4 structures and their optical properties were studied by Raman, infrared, and reflectance spectroscopies. They revealed a reduction of the sample reflectivity after RF treatment and a modification of the energy band structure