1,249 research outputs found

    High School Class for Gifted Pupils in Physics and Sciences and Pupils` Skills Measured by Standard and Pisa Test

    Full text link
    The ``High school class for students with special abilities in physics`` was founded in Nis, Serbia in 2003. The basic aim of this project has been introducing a broadened curriculum of physics, mathematics, computer science, as well as chemistry and biology. We present analysis of the pupils` skills in solving rather problem oriented test, as PISA test, and compare their results with the results of pupils who study under standard curricula. Analysis of achievement data should clarify what are benefits of introducing in school system track for gifted students. Additionally, item analysis helps in understanding and improvement of learning strategies efficacy.Comment: 6 pages, Talk given at 7th International Conference of the Balkan Physical Union, Alexandruoplos, Greece, 9-13 September 2009. To be published in AIP Conf.Pro

    GSOSTATS Database: USAF Synchronous Satellite Catalog Data Conversion Software. User's Guide and Software Maintenance Manual, Version 2.1

    Get PDF
    The United States Air Force (USAF) provides NASA Lewis Research Center with monthly reports containing the Synchronous Satellite Catalog and the associated Two Line Mean Element Sets. The USAF Synchronous Satellite Catalog supplies satellite orbital parameters collected by an automated monitoring system and provided to Lewis Research Center as text files on magnetic tape. Software was developed to facilitate automated formatting, data normalization, cross-referencing, and error correction of Synchronous Satellite Catalog files before loading into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). This document contains the User's Guide and Software Maintenance Manual with information necessary for installation, initialization, start-up, operation, error recovery, and termination of the software application. It also contains implementation details, modification aids, and software source code adaptations for use in future revisions

    A new method for complexity determination by using fractals and its applications in material surface characteristics

    Get PDF
    In this article, a new method for complexity determination by using fractals in combination with an artificial intelligent approach is proposed and its application in laser hardening technology is detailed. In particular, nanoindentation tests were applied as a way to investigate the hardness properties of tool steel alloys with respect to both marginal and relevant changes in laser hardening parameters. Specifically, process duration and temperature were considered, together with nanoindentation, later related to surface characteristics by image analysis and Hurst exponent determination. Three different Machine Learning algorithms (Random Forest, Support Vector Machine and k-Nearest Neighbors) were used and predictions compared with measures in terms of mean, variability and linear correlation. Evidences confirmed the general applicability of this method, based on integrating fractals for microstructure analysis and machine learning for their deep understanding, in material science and process engineering

    Microindentation of Polymethyl Methacrylate (PMMA) Based Bone Cement

    Get PDF
    Characterization of polymethyl methacrylate (PMMA) based bone cement subjected to cyclical loading using microindentation technique is presented in this paper. Indentation technique represents flexible mechanical testing due to its simplicity, minimal specimen preparation and short time needed for tests. The mechanical response of bone cement samples was studied. Realised microindentation enabled determination of the indentation testing hardness HIT and indentation modulus EIT of the observed bone cement. Analysis of optical photographs of the imprints showed that this technique can be effectively used for characterization of bone cements

    Towards the production of 50'000 tonnes of low-carbon steel sheet for the LHC superconducting dipole and quadrupole magnets

    Get PDF
    A total of 50'000 tonnes of low-carbon steel sheet has been ordered for the LHC main magnets. After three years of production, about 10'000 tonnes of steel sheet have been produced by Cockerill-Sambre Groupe Usinor. This paper gives a summary of the manufacturing process and improvements implemented as well as an overview of the difficulties encountered during this production. Preliminary statistics obtained for the mechanical and magnetic steel properties are presented

    Changes in arterial cerebral blood volume during lower body negative pressure measured with MRI

    Get PDF
    Cerebral Autoregulation (CA), defined as the ability of the cerebral vasculature to maintain stable levels of blood flow despite changes in systemic blood pressure, is a critical factor in neurophysiological health. Magnetic resonance imaging (MRI) is a powerful technique for investigating cerebrovascular function, offering high spatial resolution and wide fields of view (FOV), yet it is relatively underutilized as a tool for assessment of CA. The aim of this study was to demonstrate the potential of using MRI to measure changes in cerebrovascular resistance in response to lower body negative pressure (LBNP). A Pulsed Arterial Spin Labeling (PASL) approach with short inversion times (TI) was used to estimate cerebral arterial blood volume (CBVa) in eight healthy subjects at baseline and -40mmHg LBNP. We estimated group mean CBVa values of 3.13±1.00 and 2.70±0.38 for baseline and lbnp respectively, which were the result of a differential change in CBVa during -40 mmHg LBNP that was dependent on baseline CBVa. These data suggest that the PASL CBVa estimates are sensitive to the complex cerebrovascular response that occurs during the moderate orthostatic challenge delivered by LBNP, which we speculatively propose may involve differential changes in vascular tone within different segments of the arterial vasculature. These novel data provide invaluable insight into the mechanisms that regulate perfusion of the brain, and establishes the use of MRI as a tool for studying CA in more detail

    Capacitive Spring Softening in Single-Walled Carbon Nanotube Nanoelectromechanical Resonators

    Full text link
    We report the capacitive spring softening effect observed in single-walled carbon nanotube (SWNT) nanoelectromechanical (NEM) resonators. The nanotube resonators adopt dual-gate configuration with both bottom-gate and side-gate capable of tuning the resonance frequency through capacitive coupling. Interestingly, downward resonance frequency shifting is observed with increasing side-gate voltage, which can be attributed to the capacitive softening of spring constant. Furthermore, in-plane vibrational modes exhibit much stronger spring softening effect than out-of-plan modes. Our dual-gate design should enable the differentiation between these two types of vibrational modes, and open up new possibility for nonlinear operation of nanotube resonators.Comment: 12 pages/ 3 figure

    Noisy Kondo impurities

    Full text link
    The anti-ferromagnetic coupling of a magnetic impurity carrying a spin with the conduction electrons spins of a host metal is the basic mechanism responsible for the increase of the resistance of an alloy such as Cu0.998{}_{0.998}Fe0.002{}_{0.002} at low temperature, as originally suggested by Kondo . This coupling has emerged as a very generic property of localized electronic states coupled to a continuum . The possibility to design artificial controllable magnetic impurities in nanoscopic conductors has opened a path to study this many body phenomenon in unusual situations as compared to the initial one and, in particular, in out of equilibrium situations. So far, measurements have focused on the average current. Here, we report on \textit{current fluctuations} (noise) measurements in artificial Kondo impurities made in carbon nanotube devices. We find a striking enhancement of the current noise within the Kondo resonance, in contradiction with simple non-interacting theories. Our findings provide a test bench for one of the most important many-body theories of condensed matter in out of equilibrium situations and shed light on the noise properties of highly conductive molecular devices.Comment: minor differences with published versio
    corecore