1,260 research outputs found

    Pseudo-hamiltonian graphs

    Get PDF
    A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every vertex exactly h times. We present a variety of combinatorial and algorithmic results on pseudo-h-hamiltonian cycles. First, we show that deciding whether a graph is pseudo-h-hamiltonian is NP-complete for any given h > 1. Surprisingly, deciding whether there exists an h > 1 such that the graph is pseudo-h-hamiltonian, can be done in polynomial time. We also present sufficient conditions for pseudo-h-hamiltonicity that axe based on stable sets and on toughness. Moreover, we investigate the computational complexity of finding pseudo-h-hamiltonian cycles on special graph classes like bipartite graphs, split graphs, planar graphs, cocomparability graphs; in doing this, we establish a precise separating line between easy and difficult cases of this problem

    Modelling element distributions in the atmospheres of magnetic Ap stars

    Full text link
    In recent papers convincing evidence has been presented for chemical stratification in Ap star atmospheres, and surface abundance maps have been shown to correlate with the magnetic field direction. Radiatively driven diffusion in magnetic fields is among the processes responsible for these inhomogeneities. Here we explore the hypothesis that equilibrium stratifications can, in a number of cases, explain the observed abundance maps and vertical distributions of the various elements. The investigation of equilibrium stratifications in stellar atmospheres with temperatures from 8500K to 12000K and fields up to 10 kG reveals considerable variations in the vertical distribution of the 5 elements studied (Mg, Si, Ca, Ti, Fe), often with zones of large over- or under-abundances and with indications of other competing processes (such as mass loss). Horizontal magnetic fields can be very efficient in helping the accumulation of elements in higher layers. A comparison between our calculations and the vertical abundance profiles and surface maps derived by magnetic Doppler imaging reveals that equilibrium stratifications are in a number of cases consistent with the main trends inferred from observed spectra. However, it is not clear whether such equilibrium solutions will ever be reached during the evolution of an Ap star.Comment: 7 pages, 6 figures, the paper will be published in Astronomy & Astrophysics, on November 200

    Bacteriology of cheese IV. Factors affecting the ripening of Swiss-type cheese made from Pasteurized milk

    Get PDF
    Propionic acid bacteria were found in various cheeses, including Iowa swiss-type, domestic swiss and cheddar. Swiss-type cheese with a desirable sweet flavor generally contained relatively large numbers of propionic acid bacteria, and cheese with a poor flavor generally contained few or none (in 0.1 gram). All the domestic swiss cheese contained rather large numbers of propionic acid bacteria. About 85 percent of the cheddar cheese, of both good and poor quality, contained propionic acid bacteria; there was no correlation between the numbers of the organisms and the quality. A canned cheddar cheese which had eyes similar to those in swiss cheese contained a considerable number of propionic acid bacteria. Eighteen strains of propionic acid organisms were used in the manufacture of swiss-type cheese from pasteurized milk. Several of the cultures were rather consistent in the type of flavor produced, while others were variable. Results indicated that certain cultures rather regularly produced cheese having either an excellent or good flavor. The addition of propionic acid organisms was not beneficial from the standpoint of eye formation, since none of the cultures were consistent in producing good eyes. In several instances, the four cheese in a series showed the same type of eye formation, even though one of the cheese was a control, while the other three were made with propionic acid cultures. Cheese in which no propionic acid bacteria could be detected in 0.1 gram sometimes developed satisfactory eyes

    Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Get PDF
    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties

    Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    Full text link
    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, ηB2R2/M˙V=600\eta_{\ast} \equiv B_{\ast}^2 R_{\ast}^{2} / \dot{M} V_{\infty} = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 10810^{8}K, high enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ\sigma Ori E.Comment: 5 pages, 3 figures, accepted by ApJ

    Antibodies on demand: a fast method for the production of human scFvs with minimal amounts of antigen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies constitute a powerful tool to study protein function, protein localization and protein-protein interactions, as well as for diagnostic and therapeutic purposes. High-throughput antibody development requires faster methodologies with lower antigen consumption.</p> <p>Results</p> <p>Here, we describe a novel methodology to select human monoclonal recombinant antibodies by combining <it>in vitro </it>protein expression, phage display antibody libraries and antibody microarrays. The application of this combination of methodologies permitted us to generate human single-chain variable fragments (scFvs) against two proteins: green fluorescent protein (GFP) and thioredoxin (Trx) in a short time, using as low as 5 μg of purified protein. These scFvs showed specific reactivity against their respective targets and worked well by ELISA and western blot. The scFvs were able to recognise as low as 31 ng of protein of their respective targets by western blot.</p> <p>Conclusion</p> <p>This work describes a novel and miniaturized methodology to obtain human monoclonal recombinant antibodies against any target in a shorter time than other methodologies using only 5 μg of protein. The protocol could be easily adapted to a high-throughput procedure for antibody production.</p

    Soft coronal X-rays from \beta{} Pictoris

    Full text link
    A type stars are expected to be X-ray dark, yet weak emission has been detected from several objects in this class. We present new Chandra/HRC-I observations of the A5 V star \beta{} Pictoris. It is clearly detected with a flux of 9+-2 10^{-4} counts/s. In comparison with previous data this constrains the emission mechanism and we find that the most likely explanation is an optically thin, collisionally dominated, thermal emission component with a temperature around 1.1 MK. We interpret this component as a very cool and dim corona, with \log L_X/L_{bol}=-8.2 (0.2-2.0 keV). Thus, it seems that \beta{} Pictoris shares more characteristics with cool stars than previously thought.Comment: accepted by ApJ, 5 pages, 2 figure

    Solid film lubricants and thermal control coatings flown aboard the EOIM-3 MDA sub-experiment

    Get PDF
    Additional experimental data were desired to support the selection of candidate thermal control coatings and solid film lubricants for the McDonnell Douglas Aerospace (MDA) Space Station hardware. The third Evaluation of Oxygen Interactions With Materials Mission (EOIM-3) flight experiment presented an opportunity to study the effects of the low Earth orbit environment on thermal control coatings and solid film lubricants. MDA provided five solid film lubricants and two anodic thermal control coatings for EOIM-3. The lubricant sample set consisted of three solid film lubricants with organic binders one solid film lubricant with an inorganic binder, and one solid film lubricant with no binder. The anodize coating sample set consisted of undyed sulfuric acid anodize and cobalt sulfide dyed sulfuric acid anodize, each on two different substrate aluminum alloys. The organic and inorganic binders in the solid film lubricants experienced erosion, and the lubricating pigments experienced oxidation. MDA is continuing to assess the effect of exposure to the low Earth orbit environment on the life and friction properties of the lubricants. Results to date support the design practice of shielding solid film lubricants from the low Earth orbit environment. Post-flight optical property analysis of the anodized specimens indicated that there were limited contamination effects and some atomic oxygen and ultraviolet radiation effects. These effects appeared to be within the values predicted by simulated ground testing and analysis of these materials, and they were different for each coating and substrate

    Stable, Thermally Conductive Fillers for Bolted Joints

    Get PDF
    A commercial structural epoxy [Super Koropon (or equivalent)] has been found to be a suitable filler material for bolted joints that are required to have large thermal conductances. The contact area of such a joint can be less than 1 percent of the apparent joint area, the exact value depending on the roughnesses of the mating surfaces. By occupying the valleys between contact peaks, the filler widens the effective cross section for thermal conduction. In comparison with prior thermal joint-filler materials, the present epoxy offers advantages of stability, ease of application, and -- as a byproduct of its stability -- lasting protection against corrosion. Moreover, unlike silicone greases that have been used previously, this epoxy does not migrate to contaminate adjacent surfaces. Because this epoxy in its uncured state wets metal joint surfaces and has low viscosity, it readily flows to fill the gaps between the mating surfaces: these characteristics affect the overall thermal conductance of the joint more than does the bulk thermal conductivity of the epoxy, which is not exceptional. The thermal conductances of metal-to-metal joints containing this epoxy were found to range between 5 and 8 times those of unfilled joints
    corecore